Belle II input to RF3: Fundamental physics in small experiments (g-2)

Based on "Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper" (2204.02280 [hep-ex]) Anselm Vossen

Motivation: Belle II needed to reduce uncertainty on a_{μ}

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{\it exp}-a_{\mu}^{\it SM} \cong 4.2\sigma$ with uncertainty on $a_{\mu}^{\it exp}$, $a_{\mu}^{\it SM}$ comparable
- Plan to reduce $\sigma_{a_{ii}}^{exp}$ by a factor 4:
 - \rightarrow Discovery potential of experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.
- "The dominant sources of theory error are by far the hadronic contributions, in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ HLbL term

Motivation: Belle II needed to reduce uncertainty on a_{μ}

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu}-2}{2}$
- Currently: $a_{\mu}^{\it exp} a_{\mu}^{\it SM} \cong 4.2\sigma$ with uncertainty on $a_{\mu}^{\it exp}$, $a_{\mu}^{\it SM}$ comparable
- Plan to reduce $\sigma_{a_{II}^{exp}}$ by a factor 4:
 - \rightarrow Discovery potential of g-2 experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.

- E.g. New lattice calculations (Nature 593, 51–55 (2021)) reduce tension to 2σ
- But: Tension between KLOE/BaBar measurement make up ~1/3rd of HVP uncertainty

Motivation: Belle II needed to reduce uncertainty on a_{μ}

- Muon anomalous magnetic moment $a_{\mu} = \frac{g_{\mu} 2}{2}$
- Currently: $a_{\mu}^{\it exp} a_{\mu}^{\it SM} \cong 4.2\sigma$ with uncertainty on $a_{\mu}^{\it exp}$, $a_{\mu}^{\it SM}$ comparable
- Plan to reduce $\sigma_{a_{\mu}^{exp}}$ by a factor 4:

 Discovery potential of g-2 experiment limited if $\sigma_{a_{\mu}^{SM}}$ is not reduced as well.
- "The dominant sources of theory error are by far the hadronic contributions, in particular, the $\mathcal{O}(\alpha^2)$ HVP term and the $\mathcal{O}(\alpha^3)$ HLbL term"
- Gold Standard for HVP determination: Experimental measurement of e^+e^- hadronic cross-section (R measurement)
 - E.g. New lattice calculations (Nature 593, 51–55 (2021)) reduce tension to 2σ
 - But: Tension between KLOE/BaBar measurement make up ~1/3rd of HVP uncertainty
- Belle II will provide new input to resolve current tensions and work on reducing uncertainties on R meausurements → Crucial for discovery potential of g-2 experiment
- A host of other measurements possible to reduce subdominant uncertainties and provide complementary information on HVP, Hlbl → more confidence in results

How to measure HVP in e^+e^-

Use dispersion relation

$$a_{\mu}^{HVP,LO} = \frac{\alpha^2}{2\pi^2} \int_{M_{\pi}^2}^{\infty} \frac{K(s)}{s} R(s) ds$$

- R: hadronic R ratio: $R(s) = \frac{3s}{4\pi\alpha^2} \sigma_h(e^+e^- \to hadrons)$
- *R* is dominated by

low s region

$$\rightarrow e^+e^- \rightarrow \pi\pi$$
 (70%)

 \rightarrow resonance region around ρ , ω

Fixed energy B factories: ISR technique

- E.g. at BaBar effectively the ratio $\frac{\sigma(e^+e^-\to\pi\pi)}{\sigma(e^+e^-\to\mu\mu)}$ is measured
 - →dominant systematic cancel
 - →remaining systematics dominated by PID, ISR calculations

Tension in existing KLOE/BaBar measurements

Belle II outlook for $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$ measurement

- Trigger on ISR photons → ≈ 100% efficiency for ISR events
- SuperKEKB luminosities
 Systematics will dominate over whole kinematic range
- State of the art experiment, PID performance matching that of BaBar

_

Belle II outlook for $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$ measurement

- Trigger on ISR photons → ≈ 100% efficiency for ISR events
- SuperKEKB luminosities
 Systematics will dominate over whole kinematic range
- State of the art experiment, PID
 performance matching that of BaBar
 → First goal: Reproducing BaBar
 result's precision
 → Will potentially reduce.
 - → Will potentially reduce KLOE/BaBar tension

Belle II outlook for $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$ measurement

- Trigger on ISR photons → ≈ 100% efficiency for ISR events
- SuperKEKB luminosities → Systematics will dominate over whole kinematic range
- State of the art experiment, PID performance matching that of BaBar
 First goal: Reproducing BaBar result's precision
 - → Will potentially reduce KLOE/BaBar tension
- Large luminosity will
 - facilitate systematic studies (in particular PID)
 - → Expect significantly improvement of previous results
 - Help with subdominant channels like $K^+K^-, \pi^+\pi^-\pi^0, \pi^+\pi^-\pi^0\pi^0$

Additional Measurements related to g-2

Conserved vector current (CVC):

$$\tau \to \pi^0 \pi \nu_{\tau} \leftrightarrow e^+ e^- \to \pi \pi$$

- Belle II will provide further input
- Hadronic Light-by-Light (HLbL)
 - HLbL is $\mathcal{O}(\alpha^3)$ \rightarrow needs to be known to within $\approx 10\%$
 - 4-point function → significantly more complex than HVP
 - >experimental input is needed to validate theory models
 - →See whitepaper for measurements validating different aspects of the calculations

Summary and Take away message

• a_u measurements among the most sensitive to New Physics

BUT:

Discovery potential needs experimental input from e^+e^- to reduce theory uncertainty to same level as expected experimental uncertainties

Need:

→HVP from $e^+e^- \rightarrow \pi\pi$ →HLbL from form factors and $\gamma\gamma$ →hadrons

Belle II is a second generation B-factory

- State of the art detector optimized for precision physics with identified hadrons
- Will reduce systematics by resolving current experimental tension in HVP
- Excellent opportunity to reduce systematics to expected precision of a_{μ}^{exp}
- Must do experiment to validate theory calculations for HVP and HLbL

Details in "Opportunities for precision QCD physics in hadronization at Belle II -- a snowmass whitepaper" (2204.02280 [hep-ex])