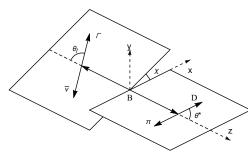
Delta Observables to establish New Physics, and MC simulations - Part II

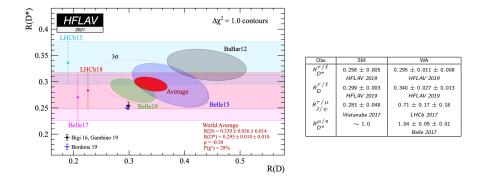
Lopamudra Mukherjee

Dept of Physics & Astronomy, University of Mississippi

Talk Based on : 2203.07189 [hep-ph]

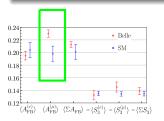

Snowmass 22, Cincinnati, May 18, 2022

Flavour Changing Charged Current B-decay


- Semileptonic decays are theoretically clean : Leptonic current is decoupled from the hadronic current.
- Here, we focus on $B \rightarrow D^* \ell \nu$ because :
 - Useful in the extraction of $|V_{cb}|$.
 - Testing CKM unitarity.
 - Sensitive probes of New Physics.
 - Unlike the B → K^{*}ℓℓ decay, this one does not suffer from pollution by charm resonances.
 - Test Lepton Flavour Universality of the SM.
 - Persistent hints of NP in τ modes and now in μ -modes.

Clean Observables

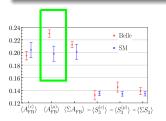
Lepton-flavour violating observables :


$$R_{D^{(*)}} = rac{\mathcal{B}(\bar{B} o D^{(*)} au ar{
u}_{\tau})}{\mathcal{B}(\bar{B} o D^{(*)} \ell ar{
u}_{\ell})}$$
 (with $\ell = e$ or μ)

Possible new physics in tau!

Angular Observables

The electron and muon data are in good agreement with SM!
Hence, these modes were always used in the extraction of V_{cb}.

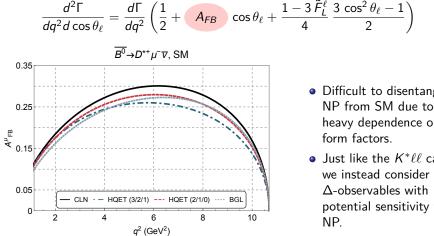

https://arxiv.org/abs/2104.02094

- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al Phys. Rev. D 100 (2019), 052007 https://arxiv.org/pdf/2104.02094.pdf
- Observables integrated over the entire q^2 range.
- Reports a > 2σ anomaly in A^{μ}_{FR} .

Are these angular observables really clean?

Angular Observables

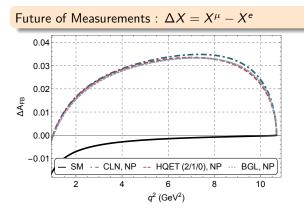
The electron and muon data are in good agreement with SM!
Hence, these modes were always used in the extraction of V_{cb}.


https://arxiv.org/abs/2104.02094

- Study of angular observables using the binned CP-averaged measurements of the four single-differential distributions provided by Belle done by Bobeth et. al *Phys. Rev. D 100 (2019), 052007* https://arxiv.org/pdf/2104.02094.pdf
- Observables integrated over the entire q^2 range.
- Reports a > 2σ anomaly in A^{μ}_{FR} .

Are these angular observables really clean?

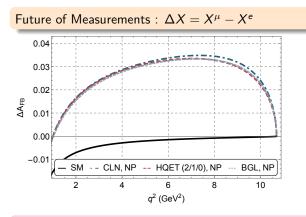
Is it possible to study the distribution of angular observables as function of $q^2?$ - Future physics goals at Belle II/LHCb upgrade


An example : Forward-backward Asymmetry

Preliminary plot, theory errors to be included soon.

- Difficult to disentangle heavy dependence on
- Just like the $K^*\ell\ell$ case. potential sensitivity to

△ Angular Observables



 In case of SM, there is an almost exact cancellation of the hadronic uncertainties.

•
$$\Delta A_{FB}^{SM} \approx 0$$

• Deviation from SM due to potential NP can be reliably extracted.

△ Angular Observables

 In case of SM, there is an almost exact cancellation of the hadronic uncertainties.

•
$$\Delta A_{FB}^{SM} \approx 0$$

• Deviation from SM due to potential NP can be reliably extracted.

What kinds of NP would provide potential signals in experiments?

MC for NP in $b \rightarrow c \ell \bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: *https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model*

MC for NP in $b \rightarrow c \ell \bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: *https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model*

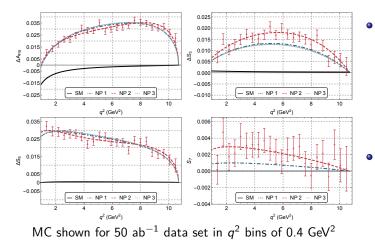
$$\begin{aligned} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \qquad \left\{ \begin{pmatrix} (1+g_L) \left[\bar{c} \gamma_\mu (1-\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \\ &+ g_R \left[\bar{c} \gamma_\mu (1+\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \\ &+ g_S \left[\bar{c} b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \\ &+ g_P \left[\bar{c} \gamma_5 b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \\ &+ g_T \left[\bar{c} \sigma^{\mu\nu} (1-\gamma_5) b \right] \left[\bar{\ell} \sigma_{\mu\nu} (1-\gamma_5) \nu_\ell \right] \right\} + h.c. \end{aligned}$$

MC for NP in $b \rightarrow c \ell \bar{\nu}$ decays

To answer this question we now have a new Monte-Carlo based on Evtgen: *https://github.com/qdcampagna/BTODSTARLNUNP_EVTGEN_Model*

$$\begin{split} \mathcal{H}_{eff} &= \frac{G_F V_{cb}}{\sqrt{2}} \qquad \left\{ \begin{pmatrix} (1+g_L) \left[\bar{c} \gamma_\mu (1-\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \\ &+ g_R \left[\bar{c} \gamma_\mu (1+\gamma_5) b \right] \left[\bar{\ell} \gamma^\mu (1-\gamma_5) \nu_\ell \right] \\ &+ g_S \left[\bar{c} b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \\ &+ g_P \left[\bar{c} \gamma_5 b \right] \left[\bar{\ell} (1-\gamma_5) \nu_\ell \right] \\ &+ g_T \left[\bar{c} \sigma^{\mu\nu} (1-\gamma_5) b \right] \left[\bar{\ell} \sigma_{\mu\nu} (1-\gamma_5) \nu_\ell \right] \right\} + h.c. \end{split}$$

Caveats :

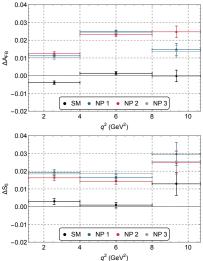

- Neutrinos are always left-handed.
- 2 The scalar matrix element $\langle D^* | \bar{c} b | \bar{B} \rangle = 0$
- **3** SM case : $g_L = g_R = g_P = g_T = 0$
- Hadronic matrix elements are expressed in terms of form factors which are non-perturbative objects (cannot be calculated form first principles of QCD).

NP Analysis

- We pick out a few NP scenarios as listed below.
- The choice is motivated such that :
 - the ratio of semi-leptonic branching fractions is constrained to be within 3% of unity.
 - they are able to explain the "experimental" $\langle \Delta A_{FB} \rangle$: 0.0349 \pm 0.0089.
 - they also satisfy constraints on other angular observables such as $\langle \Delta F_L \rangle^{exp} = -0.0065 \pm 0.0059$ and $\langle \Delta \tilde{F}_L \rangle^{exp} = -0.0107 \pm 0.0142$.

				<i>g</i> _P =0
				0.14
				0.12 95% cl Exclusion by ΔA _{FB}
				and a Evolution by AAsa
	ВL	g _R	ØР	0.10 5 0.08 0.06 0.06
Scenario 1:	0.06	0.075	0.2 i	§ 0.08
Scenario 2:	0.08	0.090	0.6 i	0.06
Scenario 3:	0.07	0.075	0	0.04
				0.02
				0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
				<i>gL</i>

Correlated Angular Asymmetries @ Belle II



If there is NP, then one will observe signals in other angular asymmetries, not just in ΔA_{FB} .

• True CP violating observable S₇ in presence of complex new physics.

Belle II Sensitivities

- Coarse binning could be done to begin with.
- Here we use Belle fiducial cuts :
 - $p_T^{\mu,e} > 0.8 \text{ GeV}$
 - $p_T^{\pi} > 0.1 \text{ GeV}$
 - Angular acceptance of all final state particles :
 - $-0.866 < \cos \theta < 0.956$
- Note that we use the same p_T cut for electron and muon since we did ^d not include detector efficiencies for the leptons separately.

Summary & Outlook

- Distributions of angular asymmetries in $B \rightarrow D^* \ell \nu$ are interesting and important for the future RPF.
- We expect angular asymmetries to provide tighter constraints on NP LFU couplings.
- We propose Δ-observables to be measured by Belle II which is ideally suited for such studies.
- We now have the MC generator for NP studies in such decays.
- A lot can be achieved at and beyond the 50 ab⁻¹ of Belle II (See talk by Tom Browder on Belle II upgrade).

- Distributions of angular asymmetries in $B \rightarrow D^* \ell \nu$ are interesting and important for the future RPF.
- We expect angular asymmetries to provide tighter constraints on NP LFU couplings.
- We propose Δ-observables to be measured by Belle II which is ideally suited for such studies.
- We now have the MC generator for NP studies in such decays.
- A lot can be achieved at and beyond the 50 ab⁻¹ of Belle II (See talk by Tom Browder on Belle II upgrade).

THANK YOU!