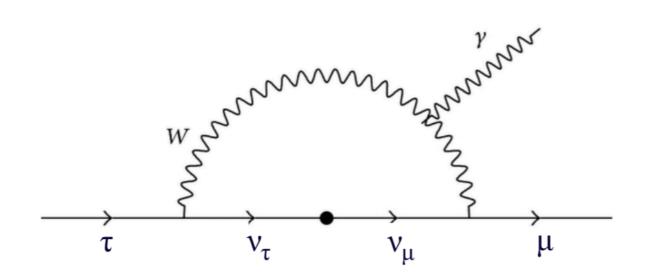
e-Print: 2203.14919 [hep-ph]

Snowmass 2021 White Paper: Charged lepton flavor violation in the tau sector


Swagato Banerjee^{1†}, Vincenzo Cirigliano^{2,3‡}, Mogens Dam⁴, Abhay Deshpande^{5,6,7}, Luca Fiorini⁸, Kaori Fuyuto², Ciprian Gal^{5,9}, Tomáš Husek¹⁰, Emanuele Mereghetti², Kevin Monsálvez-Pozo⁸, Haiping Peng¹¹, Francesco Polci¹², Jorge Portolés⁸, Armine Rostomyan¹³, Michel Hernández Villanueva¹³, Bin Yan², Jinlong Zhang¹⁴, Xiaorong Zhou¹¹

¹ University of Louisville, Louisville KY 40292
 ² Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545
 ³ Institute for Nuclear Theory, University of Washington, Seattle WA 98195-1550
 ⁴ Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark
 ⁵ Center for Frontiers in Nuclear Science, Stony Brook University, NY 11764
 ⁶ Stony Brook University, Stony Brook, NY 11794-3800
 ⁷ Brookhaven National Laboratory, Upton, NY 11973-5000
 ⁸ Instituto de Física Corpuscular (IFIC), Universidad de Valencia - CSIC, Valencia, Spain
 ⁹ Mississippi State University, MS 39762
 ¹⁰ Department of Astronomy and Theoretical Physics, Lund University, Lund, Sweden
 ¹¹ University of Science and Technology of China, Hefei 230026, China
 ¹² LPNHE, Sorbonne Université, Paris Diderot Sorbonne Paris Cité, CNRS/IN2P3, Paris, France
 ¹³ Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany
 ¹⁴ Shandong University, Qingdao, Shandong, China

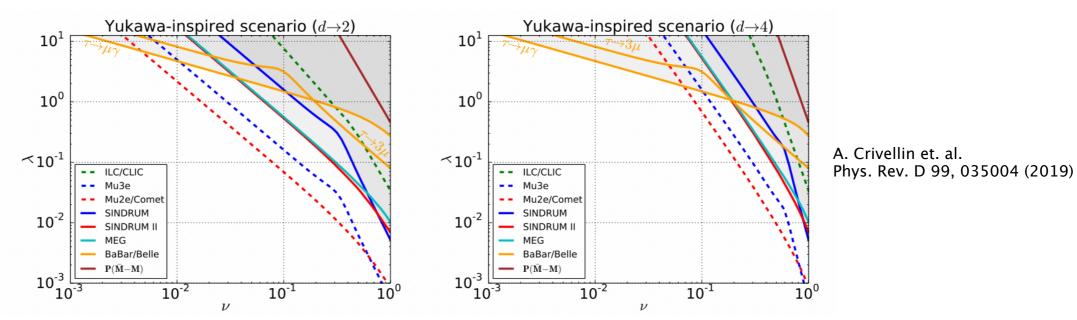
Snowmass Rare Processes and Precision Measurements Frontier Spring Meeting

Search for lepton number/flavor violation in τ decays

$$\begin{split} &\mathcal{B}(\tau^{\pm} \to \mu^{\pm} \gamma) \text{[Lee-Shrock, Phys. Rev. D 16, 1444 (1977)]} \\ &= \frac{3\alpha}{128\pi} \left(\frac{\Delta m_{23}^2}{M_W^2}\right)^2 \sin^2 2\theta_{\text{mix}} \mathcal{B}(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau}) \\ &\text{With } \Delta \sim 10^{-3} \, \text{eV}^2, \, M_W \sim \mathcal{O}(10^{11}) \, \text{eV} \\ &\approx \mathcal{O}(10^{-54}) \, (\theta_{\text{mix}} : \text{max}) \end{split}$$

many orders below experimental sensitivity!

LNV/LFV is NOT forbidden by any continuous symmetry


⇒ most New Physics (NP) models naturally include such processes

Any observation of LNV/LFV ⇒ unambiguous signature of NP

- Some models predict LFV up to existing experimental bounds
- ullet eg. SUSY models: non-diagonal slepton mass matrix $\Rightarrow \mathrm{LFV}$
- **▶** Normal (Inverted) hierarchy for slepton $\Rightarrow \tau \rightarrow \mu \gamma$ ($\tau \rightarrow e \gamma$)

New Physics expectations

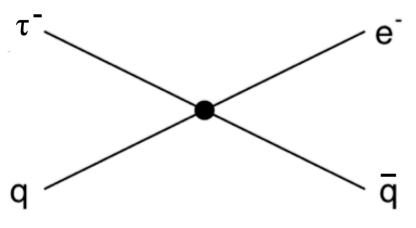
Mass dependent couplings enhance tau LFV w.r.t. lighter leptons

Tau sector complementary to muons in certain parameter spaces of New Physics Current limit on $\mathcal{B}(\mu \to e \gamma)$ does not forbid $\mathcal{B}(\tau \to \ell \gamma)$ above 10-9

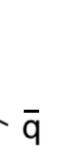
B. Grinstein, et. al. Nucl. Phys. B763, 35 (2007)

 \blacksquare Neutrinoless 2 and 3 body τ decays have different sensitivity

	${\cal B}(au o \ell \gamma)$	$\mathcal{B}(au ightarrow \ell\ell\ell)$
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-8}	10^{-9}
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-8}	10^{-10}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10^{-8}
S. Banena Universal Z' (PLB547(2002)252)	10^{-9}	10^{-8}
University of Victoria British Columbia \cdot Canada $\nu_{ m R}$ (PRD66(2002)034008)	10^{-9}	10^{-10}

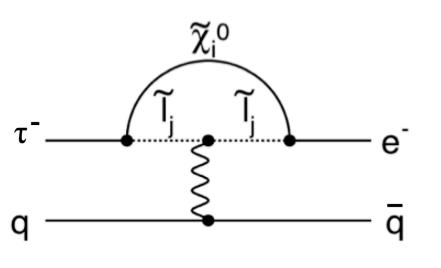


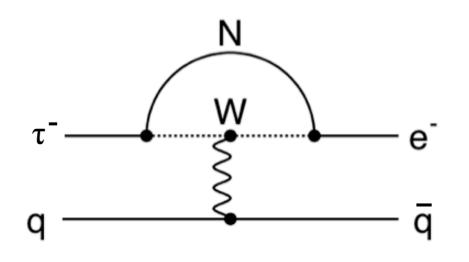
Swagato Banerjee



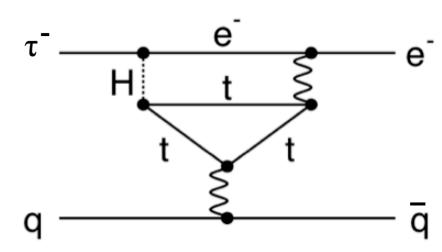
New Physics illustrations

Tree level:

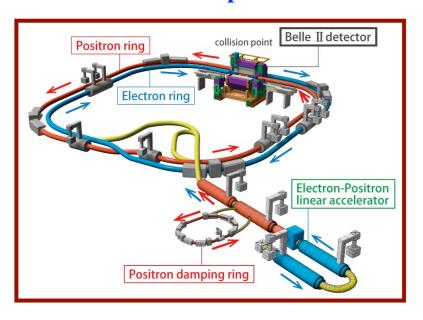

Compositeness

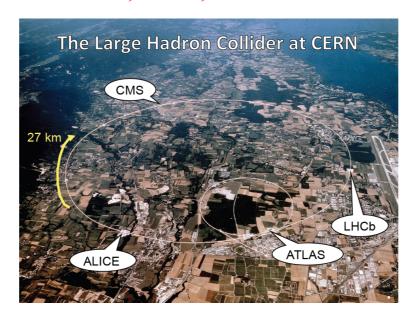

Leptoquarks

Heavy gauge bosons


Loop induced:

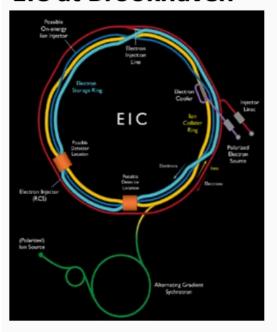
Supersymmetry

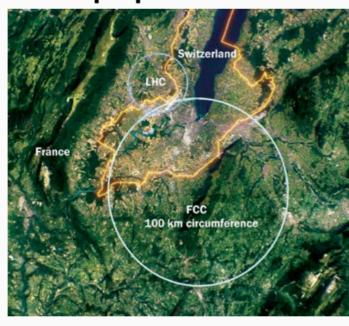

Heavy neutrinos

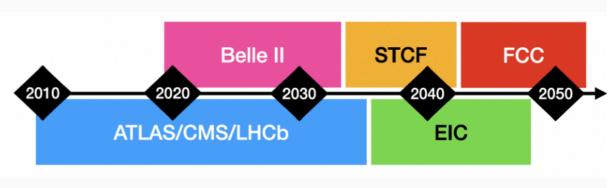

Extended Higgs models

Current and future experiments

Belle II at SuperKEKB


ATLAS, CMS, LHCb at LHC


STCF proposal at China/Novosibirsk


EIC at Brookhaven

FCC-ee proposal – CERN

Tentative timeline

UofL

About fifty τ decay modes and decays with τ in the final state

- Lepton flavor violation (charge conjugate modes implied)
 - $\tau \rightarrow e/\mu \gamma$ (Belle II, STCF, FCC-ee)
 - $\tau \rightarrow e/\mu$ (scalar/pseudoscalar/vector mesons) (Belle II)
 - $\tau \rightarrow e \ e \ e \ (Belle \ II)$
 - $\tau \rightarrow \mu \mu \mu$ (Belle II, ATLAS, CMS, LHCb, STCF, FCC-ee)
 - $\tau \rightarrow e \mu \mu, \mu e e \text{ (Belle II)}$
 - $\tau \rightarrow e/\mu h h$ (non-resonant final states with h= π/K) (Belle II, STCF)
 - $H \rightarrow e \tau$, $\mu \tau$ (ATLAS, CMS)
 - $Z(Z') \rightarrow e \tau$, $\mu \tau$ (ATLAS, CMS)
 - $e \rightarrow \tau$ transitions (EIC)
- Lepton number violation
 - $\tau^- \rightarrow e^+ h^- h^-$ (non-resonant final states with h= π/K) (Belle II)
 - $\tau^- \rightarrow \mu^+ h^- h^-$ (non-resonant final states with h= π/K) (Belle II)
- Baryon number violation
 - $\tau^- \to \Lambda \pi^-, \overline{\Lambda} \pi^-$ (Belle II)
 - $\tau^- \rightarrow \overline{p} \ \mu^+ \ \mu^-, \ p \ \mu^- \ \mu^-$ (Belle II, LHCb)

Sensitivity estimates

$$B_{\mathrm{UL}}^{90} = N_{\mathrm{UL}}^{90} / (N_{\tau} \times \varepsilon)$$

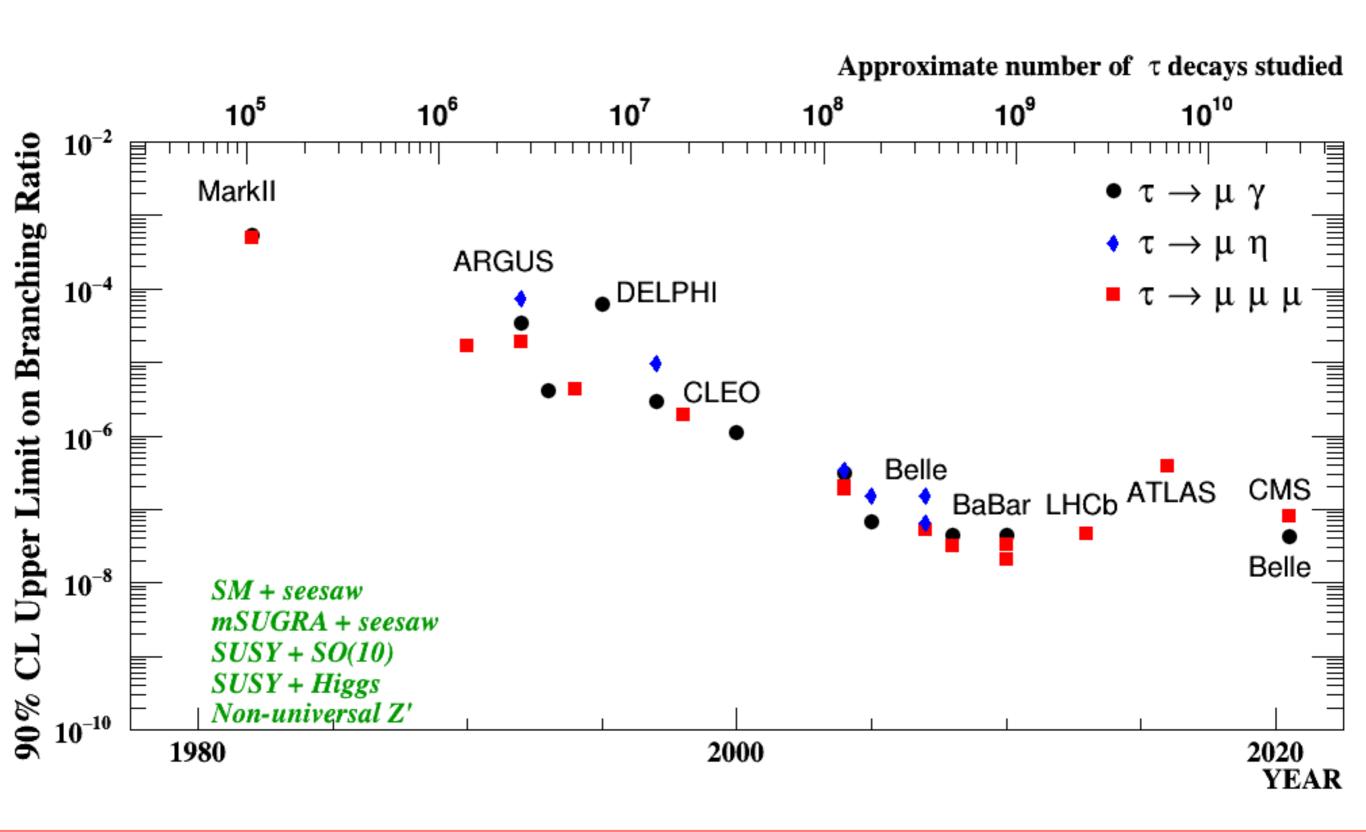
 $\underline{\varepsilon} :$ high statistics signal MC simulated for different Data-taking periods

 $\epsilon = \text{Trigger}$. Reco . Topology . PID . Cuts . Signal–Box

90% 70% 70% 50% 50% 50%

Cumulative:

90% 63% 44% 22% 11%

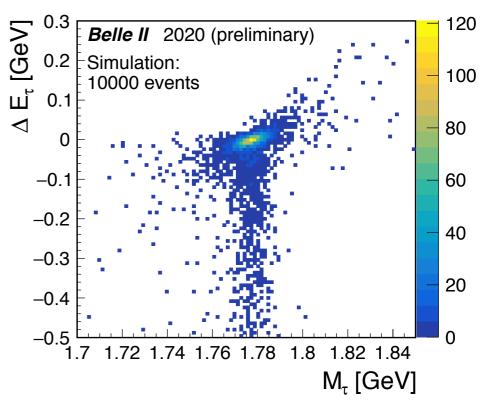

5%
3 /9

	\sqrt{s}	Luminosity (L)	$N_{\tau} = 2L\sigma$
Belle II	10.58 GeV	50 ab-1	9.2 x10 ¹⁰
HL-LHC	14 TeV	3 ab-1	O(10 ¹⁵)
STCF	2-7 GeV	1 ab-1	7.0 x10 ⁹
FCC-ee	91.2 GeV	150 ab-1	3.4 x 10 ¹¹

(Efficiency much lower)

Current status of LFV limits

UofL


$\tau \to \mu \mu \mu$ at electron-positron annihilations

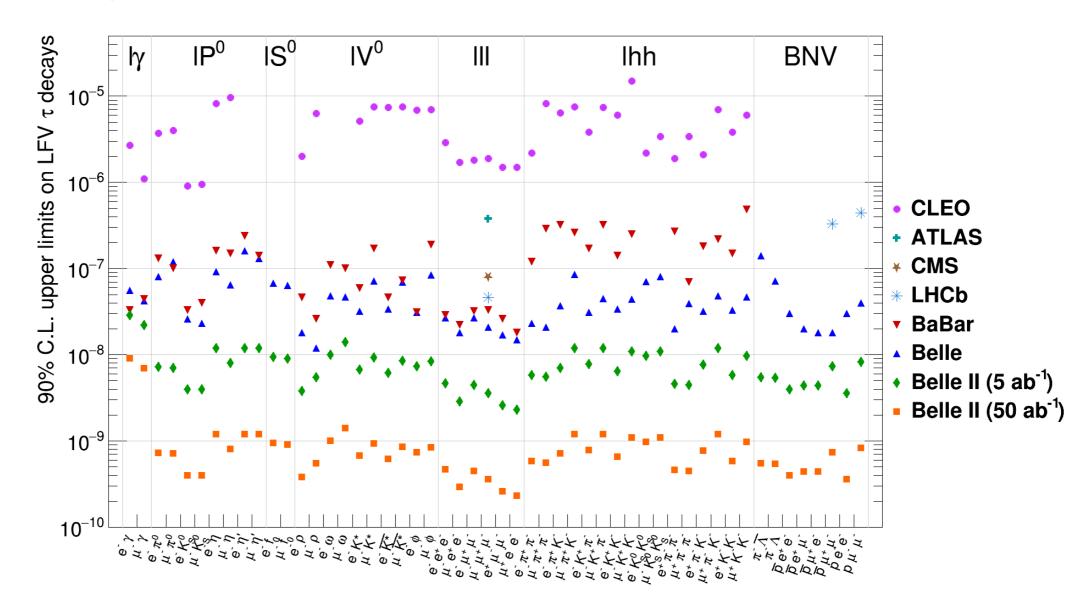
- Known initial conditions (beam energy constraint)
- Clean environment (less backgrounds)

Two independent variables:

$$M_{\tau} = \sqrt{E_{\mu\mu\mu}^2 - P_{\mu\mu\mu}^2}$$

$$\Delta E = E_{\mu\mu\mu}^{CMS} - E_{\rm beam}^{CMS}$$

- \rightarrow Δ E close to 0 for signal
- \rightarrow Mass of tau daughters close to τ mass

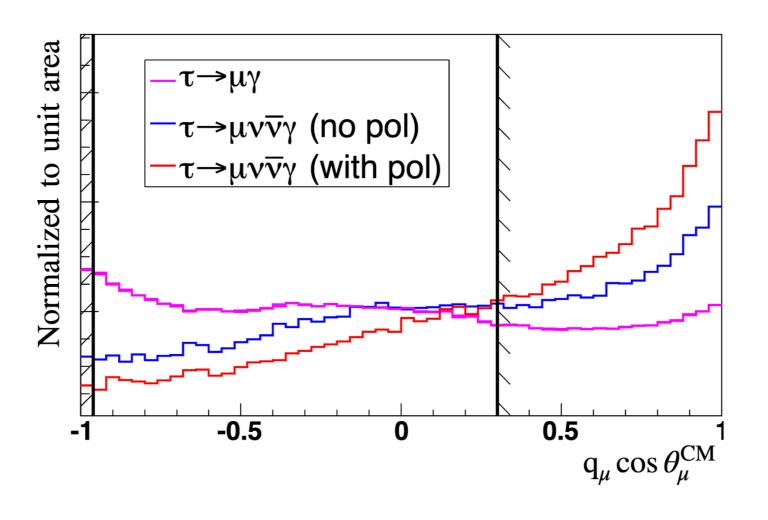

Higher signal efficiency is foreseen at Belle II than at Belle or BaBar

- higher trigger efficiencies
- improved vertexing detectors
- upgraded tracking /calorimetry
- momentum dependent particle identification optimizations

Expected Belle II sensitivity: $\mathcal{B}(\tau \to \mu\mu\mu) < 3.6 \text{ x } 10^{-10} \text{ with } 50 \text{ ab}^{-1}$

Projected limits at Belle II

	Background limited search	Background free search	
$N_{ m UL}^{90}$	$\sqrt{\mathcal{L}}$	2.44 [Feldman – Cousins for $N_{obs} = 0$]	
$N_{ m UL}^{90} \ B_{ m UL}^{90}$	$\propto 1/\sqrt{\mathcal{L}}$	$\propto 1/\mathcal{L}$	



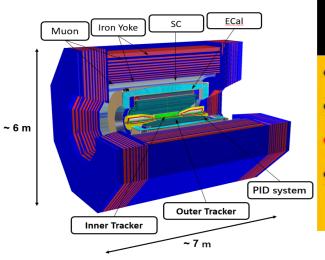
Belle II to probe LFV in several channels $\approx \mathcal{O}(10^{-10})$ to $\mathcal{O}(10^{-9})$ with 50 ab⁻¹

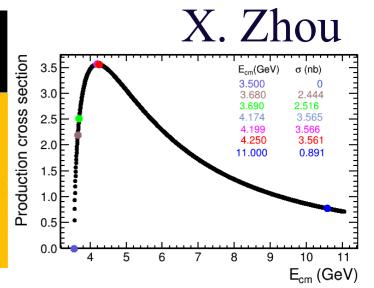
0

Beam polarization upgrade at SuperKEKB/Belle II

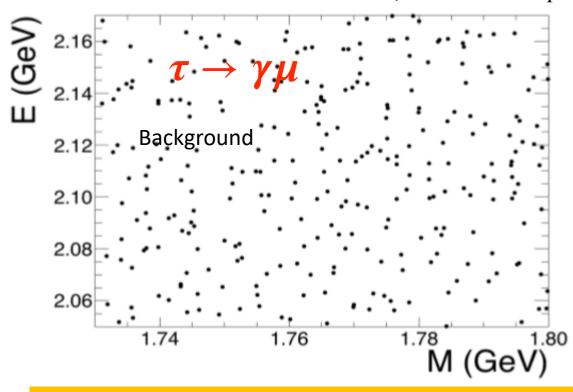
- Further improvements are expected with polarized beams
- With beam polarization, helicity distributions can suppress backgrounds
- Optimization study shows at least 10% improvement in $\tau \rightarrow \ell \gamma$ sensitivity

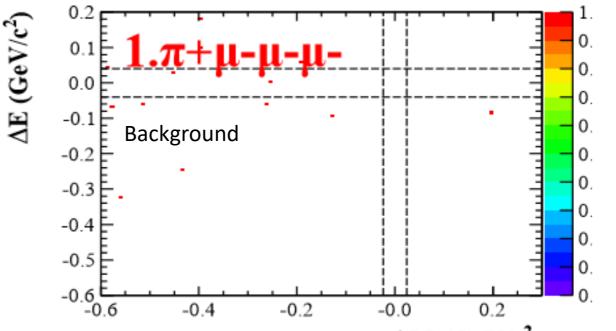
https://arxiv.org/ pdf/0810.1312.pdf


Intruiging aspect of having the polarization is the possibility to determine the helicity structure of the LFV coupling in $au o \mu\mu\mu$ from Dalitz plots.



Super Tau-Charm Facility


"Physics Potential of a Super tau-Charm Facility" (RF/SNOWMASS21-RF7_RF1_STCF-013.pdf)


- Peaking luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range $E_{cm} = 2-7 \text{ GeV}$
- Potential to increase luminosity and realize beam polarization
- A nature extension and a viable option for China accelerator project in the post BEPCII/BESIII era

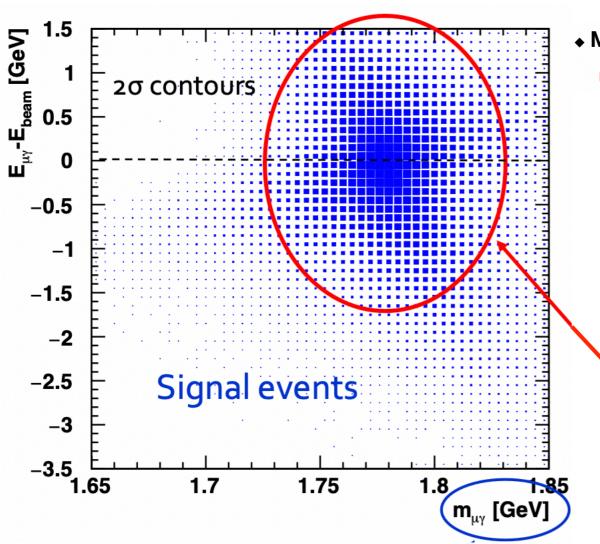
At 4.26 GeV, number of tau pairs per year: $N_{\tau\tau} \sim 1.0 \text{ ab}^{-1} \times 3.5 \text{ nb} = 3.5 \times 10^9$

$$N_{\tau\tau} \sim 1.0 \text{ ab}^{-1} \times 3.5 \text{ nb} = 3.5 \times 10^9$$

> STCF with 1ab-1:

$$\mathscr{B}_{UL}^{90}(au o \gamma \mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{ au au}} \sim 1.2 imes 10^{-8}$$

> STCF with 1ab-1:


$$\mathscr{B}_{UL}^{90}(\tau \to \mu \mu \mu) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.4 \times 10^{-9}$$

 $\Delta M (GeV/c^2)$

FCC-ee

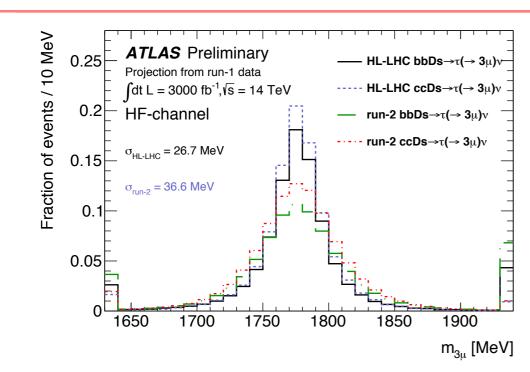
$$\mathscr{B}(\tau \to \mu \gamma)$$

♦ Main background: Radiative events (IRS+FSR), $e^+e^- \rightarrow \tau^+\tau^-\gamma$ □ τ → μγ decay faked by combination of γ from ISR/FSR and μ from τ → μννν

Smear with assumed FCC-ee detector resolutions (ILC-like detector):

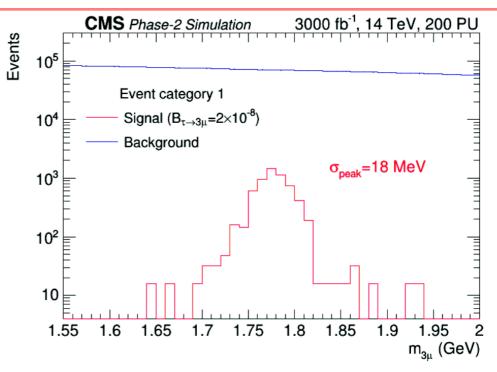
- Muon momentum [GeV] $\sigma(p_T)/p_T = 2x10^{-5} x p_T \oplus 1x10^{-3}$
- Photon ECAL energy [GeV] $\sigma(E)/E = 0.165/\sqrt{E} \oplus 0.010/E \oplus 0.011$
- Photon ECAL spatial [mm] $\sigma(x) = \sigma(y) = (6/E \oplus 2)$ mm

 $\sigma(m_{\gamma\mu})$ = 26 MeV; $\sigma(E_{\gamma\mu})$ = 850 MeV


□ From study (assuming 25% signal & background efficiency), projected BR sensitivity

2 x 10⁻⁹

$$\mathscr{B}(\tau \to \mu\mu\mu)$$


- □ Expect this search to have *very low* background, even with FCC-ee like statistics
- □ Should be able to have sensitivity down to BRs of ≤ 10⁻¹⁰

$\tau \rightarrow \mu \mu \mu$ at LHC

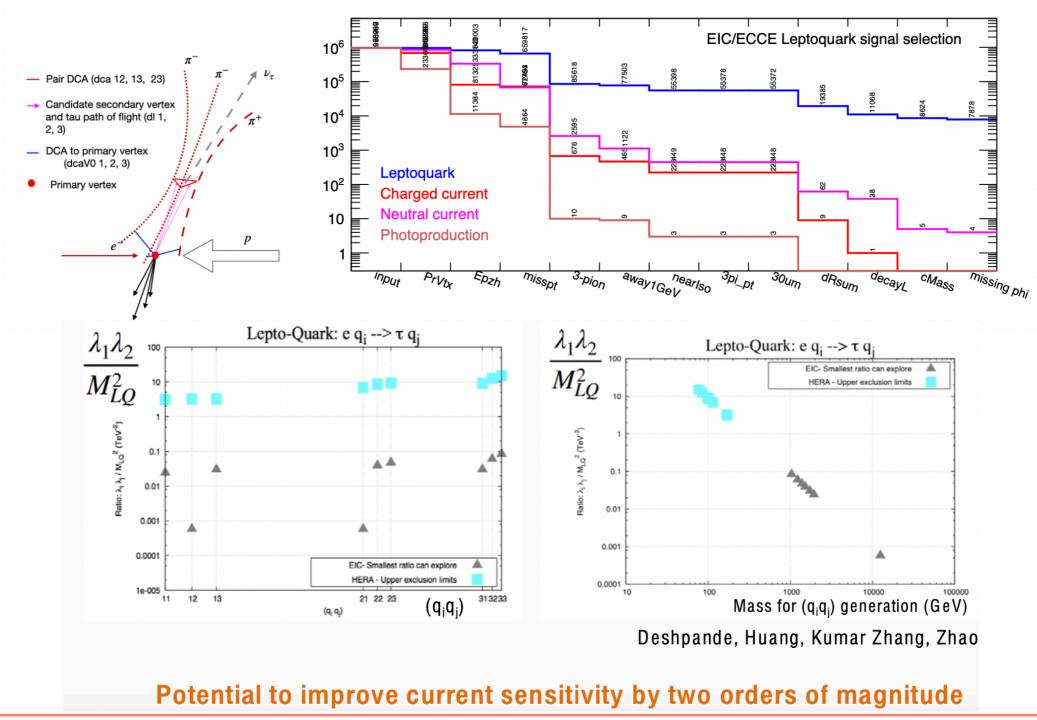
Scenario	$\mathcal{A} \times \epsilon \ [\%]$	$N_{ m bkg}^{ m exp}$	90% CL UL on BR($\tau \to 3\mu$) [10 ⁻⁹]
High background	0.88	507.05	6.40
Medium background	0.88	152.12	2.31
Low background	0.88	50.71	1.03

CMS-TDR-016

		Category 2
Number of background events	2.4×10^{6}	2.6×10^{6}
Number of signal events	4 580	3 640
Trimuon mass resolution	18 MeV	31 MeV
$B(\tau \to 3\mu)$ limit per event category	4.3×10^{-9}	7.0×10^{-9}
$B(\tau \rightarrow 3\mu)$ 90%C.L. limit	3.7×10^{-9}	

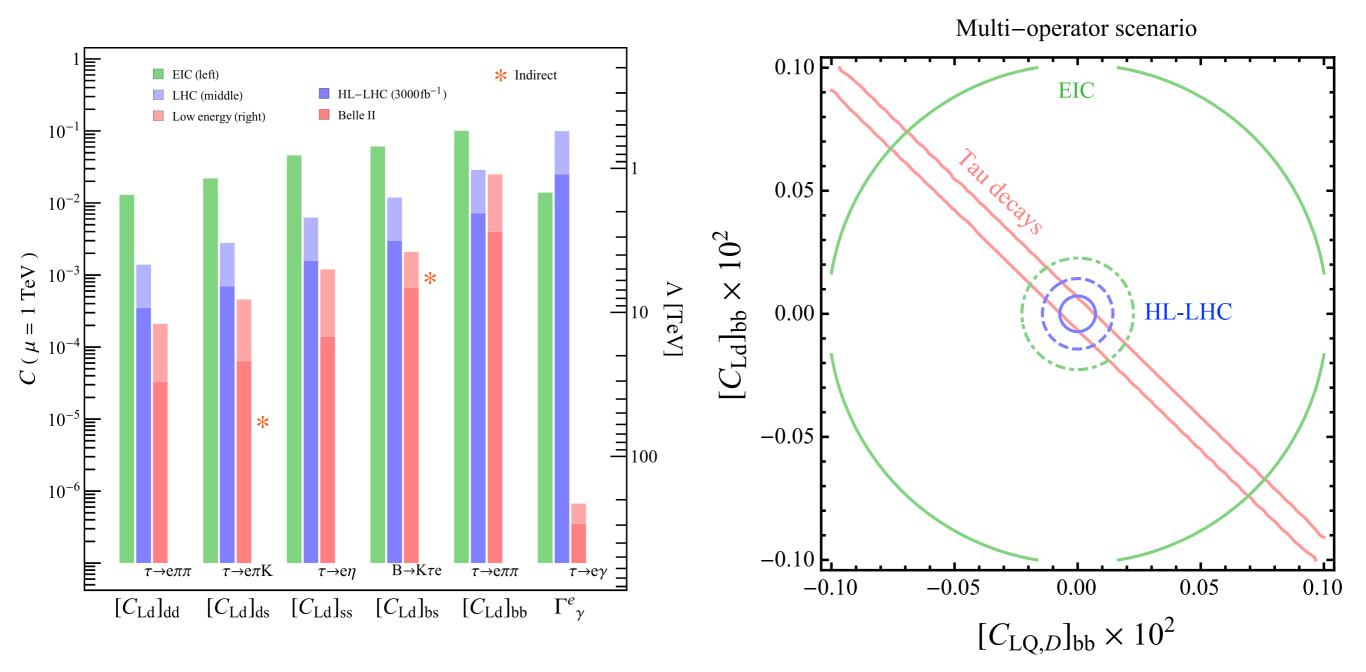
LHCb-PUB-2018-009

The cross-section is five orders of magnitude larger than at Belle II. This compensates for the higher background levels and lower integrated luminosity. As pointed out in [76], during the HL-LHC era, the LHCb Upgrade II detector will allow to collect 300 fb⁻¹. With this large data sample, LHCb will be able to probe the branching ratio down to $O(10^{-9})$, and either independently confirm any Belle II discovery or significantly improve the limit.


1900

m_{3u} [MeV]

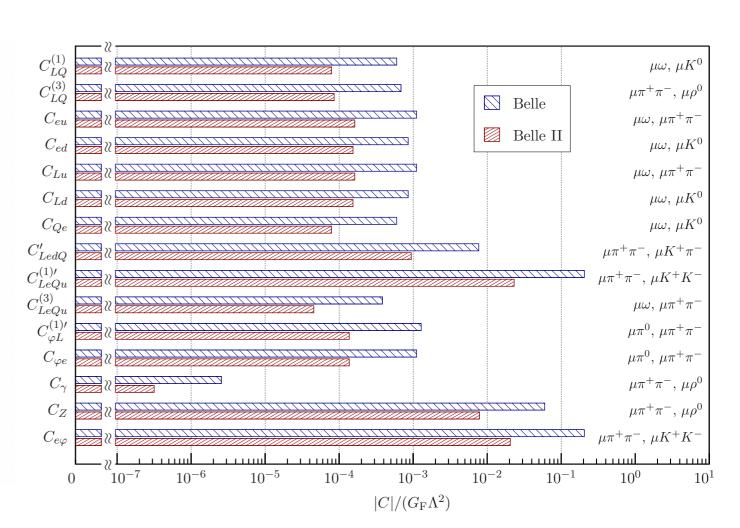
Swagato Banerjee



 \sqrt{s} between 20 GeV (5 GeV electron on 41 GeV protons) and 140 GeV (18 GeV electron on 275 GeV protons)

Tau to electron transitions

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach



e-Print: 2203.14919 [hep-ph]

Tau to muon transitions

Model-independent probes of new physics at scale (Λ) encoded as Wilson coefficients (C_n) via EFT approach

WC	Operator	WC	Operator
$C_{LQ}^{(1)}$	$\left(ar{L}_p\gamma_\mu L_r ight)\left(ar{Q}_s\gamma^\mu Q_t ight)$	$igg _{C_{earphi}}$	$\left(arphi^\daggerarphi ight)\left(ar{L}_pe_rarphi ight)$
$C_{LQ}^{(3)}$	$\left(ar{L}_p\gamma_\mu\sigma^IL_r ight)\left(ar{Q}_s\gamma^\mu\sigma^IQ_t ight)$	$C_{arphi e}$	$\left(arphi^\dagger i \overset{\leftrightarrow}{D}_\mu arphi ight) \left(e_p \gamma^\mu e_r ight)$
C_{eu}	$\left(ar{e}_p\gamma_{\mu}e_r ight)\left(ar{u}_s\gamma^{\mu}u_t ight)$	$C_{arphi L}^{(1)}$	$\left(arphi^\dagger i \overset{\leftrightarrow}{D}_\mu arphi ight) \left(ar{L}_p \gamma^\mu L_r ight)$
C_{ed}	$\left(ar{e}_p\gamma_{\mu}e_r ight)\left(ar{d}_s\gamma^{\mu}d_t ight)$	$C_{arphi L}^{(3)}$	$\left \; \left(arphi^\dagger i \overset{\leftrightarrow}{D}_{I\mu} arphi ight) \left(ar{L}_p \sigma_I \gamma^\mu L_r ight) ight.$
C_{Lu}	$\left(ar{L}_p\gamma_\mu L_r ight)\left(ar{u}_s\gamma^\mu u_t ight)$	C_{eW}	$\left(ar{L}_p\sigma^{\mu u}e_r ight)\sigma_Iarphi W^I_{\mu u}$
C_{Ld}	$\left(ar{L}_p\gamma_\mu L_r ight)\left(ar{d}_s\gamma^\mu d_t ight)$	C_{eB}	$\left(ar{L}_p \sigma^{\mu u} e_r ight) arphi B_{\mu u}$
C_{Qe}	$\left(ar{Q}_p\gamma_\mu Q_r ight)\left(ar{e}_s\gamma^\mu e_t ight)$		
C_{LedQ}	$\left(ar{L}_p^j e_r ight)\left(ar{d}_s Q_t^j ight)$		
$C_{LeQu}^{(1)}$	$\left(ar{L}_{p}^{j}e_{r}\right)arepsilon_{jk}\left(ar{Q}_{s}^{k}u_{t} ight)$		
$C_{LeQu}^{(3)}$	$\left(ar{L}_{p}^{j}\sigma_{\mu u}e_{r} ight) arepsilon_{jk}\left(ar{Q}_{s}^{k}\sigma^{\mu u}u_{t} ight)$		

e-Print: 2203.14919 [hep-ph]

Summary and outlook

	Observed Limits		Expected Limits			
$ au^- ightarrow$	Experiment	Luminosity	UL (obs)	Experiment	Luminosity	UL (exp)
$\overline{\mu^-\gamma}$	Belle [93]	988 fb^{-1}	4.2×10^{-8}	Belle II [54]	50 ab^{-1}	6.9×10^{-9}
	BaBar [83]	$516 \mathrm{fb}^{-1}$	4.4×10^{-8}			
				STCF [74]	1 ab^{-1}	1.8×10^{-8}
				FCC-ee [87, 91]	150 ab^{-1}	$\mathcal{O}(10^{-9})$
$\mu^-\mu^+\mu^-$	Belle [102]	782 fb^{-1}	2.1×10^{-8}	Belle II [54]	50 ab^{-1}	3.6×10^{-10}
	BaBar [103]	468 fb^{-1}	3.3×10^{-8}			
	LHCb [61]	3 fb^{-1}	4.6×10^{-8}	LHCb [76]	300 fb^{-1}	$\mathcal{O}(10^{-9})$
	CMS [67]	33 fb^{-1}	8.0×10^{-8}	CMS [77]	3 ab^{-1}	3.7×10^{-9}
	ATLAS [68]	20 fb^{-1}	3.8×10^{-7}	ATLAS [78]	3 ab^{-1}	1.0×10^{-9}
				STCF [74]	1 ab^{-1}	1.4×10^{-9}
				FCC-ee [87,91]	150 ab^{-1}	$\mathcal{O}(10^{-10})$

- Observation of LFV in the charged lepton sector would completely change our understanding of physics and herald a new period of discoveries in particle physics. Synergies between different experiments compliment discovery potential/confirmation.
- Now is a very interesting era in the searches for LFV in decays of the tau lepton, as the current limits will improve by an order of magnitude down to a few parts in 10⁻¹⁰ to 10⁻⁹ at the Belle II experiment. Polarized beams can further improve the sensitivity.
- Similar sensitivities will be probed at ATLAS, CMS & LHCb with high luminosity upgrade.
- Proposed experiments at STCF, EIC & FCC-ee will continue searches for LFV in the tau sector, also with the possibility of beam polarization.