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Sergey Syritsyn (SBU)

Nucleon (q̅Γq) M.E's: Neutrinos & β-decay 

• Axial form factors GA(Q2): QE neutrino scattering 
• isovector gA : neutron β-decay  
• gS, gT : sensitivity of β-decay to Beyond-SM physics

[Park et al, 2103.05599,  
PRD'22]

Figure 43: Lattice results and FLAG averages for the isovector axial charge gu�d
A for Nf = 2,

2 + 1 and 2 + 1 + 1 flavour calculations. Also shown is the experimental result as quoted in
the PDG [165].

axial charge by the interval 1.218  gu�d

A
 1.274, where the lower bound is identified

with the result of PNDME 18, while the upper bound is the weighted average plus the
scaled 1� uncertainty. Hence, for Nf = 2+1+1 we quote gu�d

A
= 1.246(28) as the FLAG

estimate, where the central value marks the mid-point of the interval, and half the width
is taken to be the error.

For QCD with Nf = 2 + 1 dynamical quarks, the calculations of �QCD 18 [101],
Mainz 19 [102] and NME 21 [965] are free of red tags, while the calculation by PACS 18A
[843] and LHPC 19 [845] do not o↵er enough control over lattice artefacts according to
the FLAG criteria. Since the result by NME 21 was published only as a preprint by the
FLAG deadline, it does not qualify for being included in a global average. Hence, for
Nf = 2 + 1 we compute a weighted average from �QCD 18 [101] and Mainz 19 [102],
assuming no correlations between the two calculations. This yields gu�d

A
= 1.248(23) with

�2/dof = 0.07.
Due to the modified criteria for excited-state contamination, none of the results ob-

tained in two-flavour QCD qualify for a global average. Nonetheless, we find it instructive
to show the results for Nf = 2 together with the calculations with Nf = 2+1 and 2+1+1
and the respective FLAG estimates in Fig. 43.

To summarize, the FLAG averages for the axial charge read

Nf = 2 + 1 + 1 : gu�d

A
= 1.246(28) Refs. [98–100], (430)

Nf = 2 + 1 : gu�d

A
= 1.248(23) Ref. [101, 102], (431)

Within errors, these averages are compatible with the result of gu�d

A
= 1.2724(23) quoted

by the PDG. While the most recent lattice calculations reproduce the axial charge at the
level of a few percent or even better, the experimental result is more precise by an order
of magnitude.
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Figure 44: Lattice results and FLAG averages for the isovector scalar charge gu�d
S for Nf = 2,

2 + 1, and 2 + 1 + 1 flavour calculations. Also shown is a phenomenological result obtained
using the conserved vector current (CVC) relation [959] (circle).

Two-flavour calculations include RQCD 14, with details identical to those described
in Sec. 10.3.2. There are two calculations, ETM 15D [867] and ETM 17 [871], which
employed twisted-mass fermions on the Iwasaki gauge action. The earlier work utilized
three ensembles, with three volumes and two pion masses down to the physical point.
The more recent work used only the physical pion mass ensemble. Both works used only
a single lattice spacing a ⇠ 0.09 fm, and therefore do not meet the criteria for continuum
extrapolation. The early work by RBC 08 with domain-wall fermions used three heavy
values for the pion mass, and a single value for the lattice spacing, volume, and source-sink
separation, and therefore do not meet many of the criteria.

The final FLAG value for gu�d

T
is

Nf = 2 + 1 + 1 : gu�d

T
= 0.989(34) Ref. [98], (434)

Nf = 2 + 1 : gu�d

T
= 0.965(61) Ref. [102]. (435)

10.4 Flavour Diagonal Charges

Three examples of interactions for which matrix elements of flavour-diagonal operators
(q�q where � defines the Lorentz structure of the bilinear quark operator) are needed are
the neutral current interactions of neutrinos, elastic scattering of electrons o↵ nuclei, and
the scattering of dark matter o↵ nuclei. In addition, these matrix elements also probe
intrinsic properties of nucleons (the spin, the nucleon sigma term and strangeness content,
and the contribution of the electric dipole moment (EDM) of the quarks to the nucleon
EDM) as explained below. For brevity, all operators are assumed to be appropriately
renormalized as discussed in Sec. 10.1.3.
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Figure 45: Lattice results and FLAG averages for the isovector tensor charge gu�d
T for

Nf = 2, 2 + 1, and 2 + 1 + 1 flavour calculations. Also shown are phenomenological results
using measures of transversity [973–977] (circles).

be estimated using �u,d,s by exploiting the heavy-quark limit [978–980].
The matrix elements of the axial operator q�µ�5q give the contribution �q of quarks

of flavour q to the spin of the nucleon:

hN |q�µ�5q|Ni = gq
A
uN�µ�5uN ,

gq
A
⌘ �q =

Z 1

0
dx(�q(x) +�q(x)) . (439)

The charge gq
A

is thus the contribution of the spin of a quark of flavour q to the spin
of the nucleon. It is also related to the first Mellin moment of the polarized parton dis-
tribution function (PDF) �q as shown in the second line in Eq. (439). Measurements
by the European Muon collaboration in 1987 of the spin asymmetry in polarized deep
inelastic scattering showed that the sum of the spins of the quarks contributes less than
half of the total spin of the proton [981]. To understand this unexpected result, called
the “proton spin crisis”, it is common to start with Ji’s sum rule [982], which provides a
gauge invariant decomposition of the nucleon’s total spin, as

1

2
=

X

q=u,d,s,c,·

✓
1

2
�q + Lq

◆
+ Jg , (440)

where �q/2 ⌘ gq
A
/2 is the contribution of the intrinsic spin of a quark with flavour q; Lq

is the orbital angular momentum of that quark; and Jg is the total angular momentum of
the gluons. Thus, to obtain the spin of the proton starting from QCD requires calculat-
ing the contributions of the three terms: the spin and orbital angular momentum of the
quarks, and the angular momentum of the gluons. Lattice-QCD calculations of the vari-
ous matrix elements needed to extract the three contributions are underway. An alternate
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MπL≲ 4, which show some evidence of finite volume
corrections. With the remaining data from five ensembles
(a total of 50 Q2 ≠ 0 points for GA and 30 for GE;M), we
compare six parametrizations for each of the three form
factors: the dipole, two Padé, Pðg; 0; 2Þ and Pðg; 1; 3Þ, and
three z-expansion fits, z2;3;4. For GA, we use the preferred
f4Nπ; 2simg data with Z2 renormalization and remark that
Z1 gives overlapping results. For GE and GM, we use the
f4Nπ; 3#g data.
The data and three of the six fits are compared in Fig. 16.

The results are summarized in Table XIII. We observe the
following:

(i) The two Pðg; 0; 2Þ and Pðg; 1; 3Þ Padé results are
essentially identical and stable for all three form
factors. On the basis of the Akaike criteria, Pðg; 1; 3Þ
is an overparametrization.

(ii) The dipole fit to GA is poor and shows deviations
near Q2 ¼ 0 and at large Q2. Similar, but smaller,

deviations are seen for GM. The dipole is a reason-
able fit only for GE.

(iii) The zn-expansion fits do not show convergence:
Table X shows variation between the z2;3;4 estimates,
and an increase in errors. Furthermore, these esti-
mates now depend on the choice of t0 [see Eq. (35)]
with the overall midpoint value t0 ¼ 0.5 GeV2

giving the smallest χ2. As in Sec. XIII, our best
choice based on the Akaike criteria is again z2 for
GA and z3 for GE and GM.

Incorporating these observations and bearing in mind
the caveats, our best parametrizations of GA, neglecting
fa;Mπ;MπLg dependent lattice artifacts, are (i) the
f4Nπ; 2sim; P̂2g fit

GAðQ2Þ≡ gA
1þb0

Q2

4M2
N
þb1ð Q2

4M2
N
Þ2

¼ 1.270ð11Þ
1þ 5.36ð20Þ Q2

4M2
N
− 0.22ð81Þð Q2

4M2
N
Þ2
; ð55Þ

with χ2=dof ¼ 1.27 and MN ¼ 939 MeV, and (ii) the
f4Nπ; 2sim; ẑ2g fit that gives

GAðQ2Þ ¼ 0.725ð5Þ − 1.63ð3Þzþ 0.17ð13Þz2; ð56Þ

with χ2=dof ¼ 1.15, and z defined in Eq. (35) with
t0 ¼ 0.5 GeV2. For our best results, we take the average
of these f4Nπ; 2sim; P̂2g and f4Nπ; 2sim; ẑ2g values given in
Table XIII to get

gu −dA ¼ 1.281ð11Þð22Þsys;

hr2Aiu −d¼ 0.391ð15Þð70Þsys fm2; ð57Þ

which are slightly smaller than the values in Eqs. (42)
and (45). The second, systematic, error is taken to be the
difference between the two estimates averaged.
Similarly, the results of the f4Nπ;3#;P̂2g and f4Nπ;3#; ẑ3g

fits to GE and GM are

GEðQ2Þ ¼ 0.999ð5Þ
1þ 11.72ð29Þ Q2

4M2
N
þ 38.5ð1.9Þð Q2

4M2
N
Þ2
; or

¼ 0.290ð3Þ − 1.23ð3Þzþ 1.72ð19Þz2

þ 2.48ð35Þz3;

GMðQ2Þ ¼ 4.52ð5Þ
1þ 9.68ð35Þ Q2

4M2
N
þ 21.3ð1.8Þð Q2

4M2
N
Þ2
; or

¼ 1.613ð11Þ − 5.74ð14Þzþ 6.1ð1.2Þz2

þ 11.9ð2.5Þz3: ð58Þ

Both sets of fits have very similar χ2=dof: ≈0.43 and ≈1.65
for GE and GM, respectively. The variance-covariance

FIG. 16. Comparison of the dipole, P2 Padé, and z-expansion
fits to the combined data from the five larger volume ensembles.
We selected f4Nπ ; 2simg data forGA and f4Nπ; 3#g forGE andGM
as they show the least dependence on a and Mπ , which is
neglected in these fits. Result of the P2 fit to GA is given in
Eq. (55), and to GE and GM in Eq. (58).

SUNGWOO PARK et al. PHYS. REV. D 105, 054505 (2022)

054505-38

hp+ q|q̄�µ�5q|pi = ū0
h
GA�µ + G̃P

qµ
M

i
�5u

hp+ q|q̄�5q|pi = GP ū
0�5u

hp|q̄q|pi = gS ū
0u

hp|q̄�µ⌫q|pi = gT ū
0�µ⌫u

• Ongoing controversy on excited-state  
contamination in single-nucleon ME:  
e.g. N𝜋 states required for PCAC 

• Much harder problem in light nuclei[Y.Aoki et al, FLAG'21 2111.09849]
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Sergey Syritsyn (SBU)

Nucleon (q̅Γq) M.E's: DM, LFV, CPv Sensitivity

• DM direct detection:  
scalar, fermion DM EFT couplings 
~gA,S,P,T , ⟨GG⟩, ⟨GG̃⟩ 

• Lepton Flavor violation  
µ→e conversion EFT couplings 
~GV,A,S,P,T(Q2= –(mµ)2) , ⟨GG⟩ 

• gT : CP violation in nucleon EDM from quark EDM 

Figure 47: Lattice results and FLAG averages for the nucleon sigma term, �⇡N , for the
Nf = 2, 2 + 1, and 2 + 1 + 1 flavour calculations. Determinations via the direct approach
are indicated by squares and the Feynman-Hellmann method by triangles. Results from
calculations which analyze more than one lattice data set within the Feynman-Hellmann
approach [1000, 1006–1014] are shown for comparison (pentagons) along with those from
recent analyses of ⇡-N scattering [990–992, 1015] (circles).

However, there is some fluctuation in the central values, in particular, when taking the
lattice results as a whole into account, and we caution the reader that the averages may
change as new results become available.

Also shown for comparison in the figures are determinations from the FH method
which utilize more than one lattice data set [1000, 1006–1014] as well as results for �⇡N

obtained from recent analyses of ⇡-N scattering [990–992, 1015]. There is some tension,
at the level of three to four standard deviations, between the lattice average for Nf = 2+1
and Hoferichter et al. [992] (Hoferichter 15 in Fig. 47), who quote a precision similar to
that of the average.

Finally we remark that, by exploiting the heavy-quark limit, the light- and strange-
quark sigma terms can be used to estimate �q for the charm, bottom and top quarks [978–
980]. The resulting estimate for the charm quark, see, e.g. the RQCD 16 Nf = 2 analysis
of Ref. [864] that reports fTc = 0.075(4) or �c = 70(4) MeV is consistent with the di-
rect determinations of ETM 19 [964] for Nf = 2 + 1 + 1 of �c = 107(22) MeV, ETM
16A [868] for Nf = 2 of �c = 79(21)(128 ) MeV and �QCD 13A [880] for Nf = 2 + 1 of
�c = 94(31) MeV. BMW in BMW 20A [996] employing the Feynman-Hellmann approach
obtain fTc = �c/mN = 0.0734(45)(55) for Nf = 1 + 1 + 1 + 1. MILC in MILC 12C [108]
find hN |c̄c|Ni = 0.056(27) in the MS scheme at a scale of 2 GeV for Nf = 2 + 1 + 1 via
the hybrid method. Considering the large uncertainty, this is consistent with the other
results once multiplied by the charm quark mass.
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Figure 48: Lattice results and FLAG averages for �s for the Nf = 2, 2 + 1, and 2 + 1 + 1
flavour calculations. Determinations via the direct approach are indicated by squares, the
Feynman-Hellmann method by triangles and the hybrid approach by circles. Results from
calculations which analyze more than one lattice data set within the Feynman-Hellmann
approach [1007, 1008, 1010, 1011, 1014] are shown for comparison (pentagons).

10.4.5 Results for gu,d,sT

A compilation of recent results for the flavour-diagonal tensor charges gu,d,s
T

for the proton
in the MS scheme at 2 GeV is given in Tab. 75 and plotted in Fig. 49. Results for the
neutron can be obtained by interchanging the u and d flavour indices. Only the PNDME
2+1+1 flavour calculations qualify for the global average.

The FLAG values remain the same as in FLAG 19, i.e., the PNDME 18B [110] results,
which supersede the PNDME 16 [875] and the PNDME 15 [873] results:

Nf = 2 + 1 + 1 : gu
T
= 0.784(28)(10) Ref. [110], (454)

Nf = 2 + 1 + 1 : gd
T
= �0.204(11)(10) Ref. [110], (455)

Nf = 2 + 1 + 1 : gs
T
= �0.0027(16) Ref. [110]. (456)

The ensembles and the analysis strategy used in PNDME 18B is the same as described
in Sec. 10.4.1 for gu,d,s

A
. The only di↵erence for the tensor charges was that a one-state

(constant) fit was used for the disconnected contributions as the data did not show sig-
nificant excited-state contamination. The isovector renormalization constant, used for all
three flavour-diagonal tensor operators, was calculated on the lattice in the RI-SMOM
scheme and converted to MS at 2 GeV using 2-loop perturbation theory.

The PNDME 20 [987] provided a status update on gu,d,s
T

to PNDME 18B [103] but
is not considered for the average as it is a conference proceeding. It also presented re-
sults showing that flavour mixing in the calculation of tensor renormalization constants is
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Figure 49: Lattice results and FLAG averages for gu,d,sT for the Nf = 2, 2 + 1, and 2 + 1 + 1
flavour calculations.

applies to the JLQCD 18 [884] and ETM 17 [871] calculations. The Mainz 19A [988]
results with 2+1-flavour ensembles of clover fermions are not included in the averages as
Ref. [988] is a conference proceeding.
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III. SCALAR DARK MATTER

The above results are easily extended to the case of scalar DM.3 For relativistic scalar

DM, denoted by ', the e↵ective interactions with the SM start at dimension six,

L' = Ĉ
(6)
a Q

(6)
a + · · · , where Ĉ

(6)
a =

C
(6)
a

⇤2
, (62)

where ellipses denote higher dimension operators. The dimension-six operators that couple

DM to quarks and gluons are

Q
(6)
1,q =

�
'⇤i

$
@µ'

�
(q̄�µq) , Q

(6)
2,q =

�
'⇤i

$
@µ'

�
(q̄�µ�5q) , (63)

Q
(6)
3,q = mq('

⇤')(q̄q) , Q
(6)
4,q = mq('

⇤')(q̄i�5q) , (64)

Q
(6)
5 =

↵s

12⇡
('⇤')Gaµ⌫Ga

µ⌫ , Q
(6)
6 =

↵s

8⇡
('⇤')Gaµ⌫ eGa

µ⌫ . (65)

while the coupling to photons are

Q
(6)
8 =

↵

12⇡
('⇤')F µ⌫Fµ⌫ , Q

(6)
9 =

↵

8⇡
('⇤')F µ⌫F̃µ⌫ . (66)

Here
$
@µ is defined through �1

$
@µ�2 = �1@µ�2 � (@µ�1)�2, and q = u, d, s again denote the

light quarks. The strong coupling constant ↵s is taken at µ ⇠ 1 GeV, and ↵ = e2/4⇡ the

electromagnetic fine structure constant. The operators Q
(6)
6 and Q

(6)
9 are CP-odd, while all

the other operators are CP-even. There are also the leptonic equivalents of the operators

Q
(6)
1,q, . . . , Q

(6)
4,q, with q ! `.

At LO in chiral counting the operators coupling DM to quark and gluon currents

hadronize as

Q
(6)
1q !2F q/N

1 m'O
N
1 + O(q2) , (67)

Q
(6)
2q ! � 4F q/N

A m'O
N
7 + O(q3) , (68)

Q
(6)
3q !F q/N

S O
N
1 + O(q2) , (69)

Q
(6)
4q !F q/N

P O
N
10 + O(q3) , (70)

Q
(6)
5 !FGO

N
1 + O(q2) , (71)

Q
(6)
6 !FG̃O

N
10 + O(q3) . (72)

3 For operators and Wilson coe�cients we adopt the same notation for scalar DM as for fermionic DM. No

confusion should arise as this abuse of notation is restricted to this section and Appendix D.

14

Example: scalar dark matter couplings  
[Bishara et al 1707.06998]

[Y.Aoki et al, FLAG'21 2111.09849]
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Sergey Syritsyn (SBU)

Single-nucleon matrix elements 
Quark matrix elements (q̅Γq) : precision results available 

persistent doubt about excited states 
Gluon matrix elements ⟨GG⟩, ⟨GG̃⟩ ~ straightforward (albeit expensive) 

Noise(Gluon observables) ≫ Noise (Quark observables) 
mixing with isoscalar quark densities 

Momentum dependence (form factors): straightforward 
large V3 for small momentum transfer Q2 ≲ 0.1 GeV2  

Two-nucleon and light-nuclei MEs 
at the physical point: challenging 

dense spectrum of excitations 
multiple-volume dependence needed

Nuclear M.E's: Summary / Challenges

Lattice QCD:  
1,2-nucleon, light-N MEs 

vs. mq, Q2 

NN LECS

Chiral EFT Large Nuclei?

|AV!1|2 /
⇣
q
@�(q)

@q
+ k

@�(k)

@k

⌘
|AV=L3 |2

𝛿(k) = scattering phase 
ϕ(q) = lattice zeta fcn. 
[Lellouch, Luscher, '01] 

2-body amplitude of local interaction:
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Sergey Syritsyn (SBU)

P, CP(T) Violation: Nucleon/Nuclear EDM

The most sensitive probe of non-CKM CPv: 

Any signal >10-5⋅(current bound)→discovery 

θQCD-induced EDM : Strong-CP problem 

Prerequisite for Baryogenesis (non-θQCD EDM)

~dN = dN
~S

S

Lint = eAem
µ Vµ (P,T-even)

+ eAem
µ Aµ (P,T-odd)

Moore’s Law for Neutron EDM Searches

6

10-28 e cm
CURRENT LIMIT <300
Spallation Source @ORNL < 5
Ultracold Neutrons @LANL ~30
PSI EDM <50 (I), <5 (II)
ILL PNPI <10
Munich FRMII < 5
RCMP TRIUMF <50 (I), <5 (II)
JPARC < 5
Standard Model (CKM) < 0.001

[B.Filippone '16]
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Sergey Syritsyn (SBU)

Energy 
scale

QCDHadron TeVNuclearAtomic

q EDM

q cEDM

e-q int

4-q int

ggg

θ-term

N EDM

e-N int

N-N int

Schiff 
moment

MQM

Paramagnetic 
 Atom EDM 
/ Molecules

Diamagnetic 
 Atom 
EDM

Nuclear 
EDM

Left-Right

Leptoquark

Composite 
models

Extradimension

observable : Observable available at experiment

: Sizable dependence

: Weak dependence

Standard Model

Supersymmetry

e,µ EDM

: Matching

(RGE)

Higgs doublets

(θ-term)(PQM)

(PQM)

BSM physics:

Sources of  Nucleon and Nuclei EDMs

Effective quark-gluon CPv interactions  
organized by dimension  
[ Engel, Ramsey-Musolf, van Kolck, 
Prog.Part.Nucl.Phys. 71:21 (2013)]

Lattice QCD: CPv at hadronic scale  
(Nucleon EDM and 𝜋N CPv interactions)

dn,p = d✓n,p✓QCD + dcEDM
n,p ccEDM + . . .

Leff =
X

i

ci
[⇤(i)]di�4

O
[di]
i

d=4 :  θQCD

d=5(6) :  quark EDM, chromo-EDM

d=6 :  4-fermion CPv, 3-gluon (Weinberg)

[Yamanaka et al, EPJA53:54 (2017)]

Lattice methods for computing nEDM 

Background electric field 

CPv form factor F3(Q2→0)

H = �~dN · ~E

Dirac
Pauli (anomalous 
magnetic dipole) Electric dipole

hp+ q|Jµ|pi��CP = ūp0
⇥
F1�

µ + (F2 + iF3�5)
�µ⌫q⌫
2mN

⇤
up
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Sergey Syritsyn (SBU)

Nucleon EDM from Quark EDMs

[Y.Aoki et al, FLAG'21 2111.09849]

dN = guT du + gdT dd + gsT ds

Quark EDM → nucleon EDM: "tensor charge"

Constraints on split-SUSY model 
[Bhattacharya et al, PRL115:212002 (2019)]

hN |q̄�µ⌫q|Ni = dqT ū�µ⌫u

2

Ensemble ID a (fm) M sea
⇡ (MeV) M⇡ (MeV) L3 ⇥ T M⇡L tsep/a Nconf Nmeas

a12m310 0.1207(11) 305.3(4) 310.2(2.8) 243 ⇥ 64 4.55 {8, 9, 10, 11, 12} 1013 8104
a12m220S 0.1202(12) 218.1(4) 225.0(2.3) 243 ⇥ 64 3.29 {8, 10, 12} 1000 24000
a12m220 0.1184(10) 216.9(2) 227.9(1.9) 323 ⇥ 64 4.38 {8, 10, 12} 958 7664
a12m220L 0.1189(09) 217.0(2) 227.6(1.7) 403 ⇥ 64 5.49 10 1010 8080
a09m310 0.0888(08) 312.7(6) 313.0(2.8) 323 ⇥ 96 4.51 {10, 12, 14} 881 7048
a09m220 0.0872(07) 220.3(2) 225.9(1.8) 483 ⇥ 96 4.79 {10, 12, 14} 890 7120
a09m130 0.0871(06) 128.2(1) 138.1(1.0) 643 ⇥ 96 3.90 {10, 12, 14} 883 7064
a06m310 0.0582(04) 319.3(5) 319.6(2.2) 483 ⇥ 144 4.52 {16, 20, 22, 24} 1000 8000
a06m220 0.0578(04) 229.2(4) 235.2(1.7) 643 ⇥ 144 4.41 {16, 20, 22, 24} 650 2600

TABLE I. The parameters of the (2+1+1) flavor HISQ lattices are quoted from Ref. [6]. The symbols used in the plots are defined
along with the ensemble ID. All chiral analyses are carried out with respect to the clover valence pion massesM⇡ which are tuned
to be close to the Goldstone HISQ pion masses M sea

⇡ . We also give the source-sink separations (tsep/a) simulated, configuration
analyzed (Nconf) and the total number of measurements (Nmeas) made. Finite volume analysis is done in terms of M⇡L.

|h1|O�|1i| ⇠ h0|O�|0i, but has O(100%) errors. As illus-
trated in Fig. 1 for the a09m310 ensemble, the overlap of
data in the center of the fit range for all the source-sink
separations tsep indicates that excited state contamina-
tion in the tensor charges is small and under control.

The disconnected diagrams are estimated using a
stochastic method accelerated with a combination of the
truncated solver method (TSM) [9, 10], the hopping
parameter expansion (HPE) [11, 12] and the all-mode-
averaging (AMA) technique [13]. In most cases, the dis-
connected contribution is small and consistent with zero
as illustrated in Fig. 1 for the a09m310 ensemble. This
feature was also observed in Ref. [14]. We find that the
light quark contribution is too noisy to extrapolate to the
continuum limit, so we do not include it in the central
value. We, however, use the largest estimate, 0.0121, on
the coarsest ensemble a12m310 as an additional system-
atic error in g

d
T , g

u
T , and g

d+u
T .

The renormalization factor, calculated nonperturba-
tively in the RI-sMOM scheme [15, 16] using the iso-
vector operator, contributes a significant fraction of the
total error. The charges converted into the MS scheme
at 2GeV are given in Table II and Fig. 2. They are
essentially flat in the three variables, lattice spacing a,
the pion mass M⇡ and the spatial lattice size L . We
make a simultaneous fit to the data using the lowest or-
der ansatz appropriate to our not fully O(a) improved
clover-on-HISQ formulation:

gT (a,M⇡, L) = c1 + c2a+ c3M
2
⇡ + c4e

�M⇡L . (1)

As discussed in [4], with current data the extrapolation
to the physical point (M⇡ = 135 MeV, a = 0, M⇡L = 1)
is insensitive to additional corrections. The final renor-
malized charges for the neutron [17] are

g
d
T = 0.774(66) , g

u
T = �0.233(28) ,

g
d�u
T = 1.020(76) , g

d+u
T = 0.541(67) . (2)

The �
2
/dof for the fits are 0.1, 1.6, 0.4 and 0.2, respec-

tively, with dof = 5. Including the leading chiral loga-

rithms [18] in Eq. (1) gives similar results [4]. g
s
T , after

extrapolation in the lattice spacing a and M
2
⇡ , is

g
s
T = 0.008(9) , (3)

with a �
2
/dof = 0.29 with dof = 2. The intercept of the

fit on the [gsT , a] plane is shown in Fig. 3.
Our result for g

d�u
T , with control over all systematic

errors, is in good agreement with other lattice calcula-
tions [19, 20]. The LHPC [21] and RQCD [22] Collabo-
rations also find no significant dependence on the lattice
spacing and volume, but do find a small dependence on
the quark mass, so they extrapolate only in the quark
mass using linear/quadratic (LHPC) and linear (RQCD)
fits in M

2
⇡ . Their final estimates, gd�u

T = 1.038(11)(12)
(LHPC) and g

d�u
T = 1.005(17)(29) (RQCD) are consis-

tent with ours. A fit to our data versus only M
2
⇡ , shown

as an overlay in Fig. 2 (center), gives a similarly accurate
estimate g

d�u
T = 1.059(29) with a �

2
/dof = 0.3.

Our results on the tensor charges have implications
for the neutron EDM and CP-violation in BSM theories.
At the hadronic scale, µ ⇠ O(1) GeV, after integrating
out all heavy degrees of freedom the dominant e↵ect of
new CP-violating couplings in BSM theories is encoded
in local operators of dimension five and six. Leading,
among them, are the elementary fermion EDMs [23, 24]:

�LCPV � �
ie

2

X

f=u,d,s,e

df f̄�µ⌫�5F
µ⌫
f . (4)

The contribution of the quark EDM dq to dn is [25, 26]

dn = g
u
T du + g

d
T dd + g

s
T ds , (5)

consequently, improved knowledge of gqT combined with
experimental bounds on dn provides stringent constraints
on new CP violation encoded in dq.
Our calculation has the following impact: (i) We re-

duce the uncertainty on g
u,d
T from the ⇠ 50% of previ-

ous QCD sum rules (QCDSR) estimates [27] to the 10%

Figure 49: Lattice results and FLAG averages for gu,d,sT for the Nf = 2, 2 + 1, and 2 + 1 + 1
flavour calculations.

applies to the JLQCD 18 [884] and ETM 17 [871] calculations. The Mainz 19A [988]
results with 2+1-flavour ensembles of clover fermions are not included in the averages as
Ref. [988] is a conference proceeding.
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Nucleon EDM from θQCD-Term

Wilson-Clover quarks 
[T.Bhattacharya et al, Lattice'21]

Calculation of nEDM on the lattice Tanmoy Bhattacharya
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Figure 4: Fits to remove ESC in the three-point function of =+4 in the presence of ⇥. The left panel shows
the standard analysis where the spectrum is obtained from fits to the two-point function, whereas the right
panel assumes the dominant contribution is due to an #c intermediate state.

not very sensitive to low-lying excited states since

� + ⌫4
��C ⇡ (� + ⌫) � (⌫�)C for C ⌧ ��1

, (4)

and it is di�cult to obtain the required value � at C ! 1 using data at only moderate C. As a
result, with finite precision data, the results depend greatly on the priors one puts on the excited
state spectrum. Thus, as shown in Fig. 4, the value of the ground-state matrix element depends
strongly on whether one assumes an #c excited state makes a contribution, as expected by jPT, or
whether the fits to the two-point function gives all the states that contribute significantly.

The electric dipole moment is obtained from the value of the form factor at &2 = 0. Chiral
perturbation theory provides guidance for &2 fits. With our data, however, linear fits or fits without
constraining the coe�cient of the chiral logarithm makes only a small di�erence. To obtain the
central results, we carry out a chiral fit based on jPT and assume a linear dependence on 0; this is
shown in Fig. 5. The final results are

3= = �0.003(7) (20) ⇥4 · fm 3? = 0.024(10) (30) ⇥4 · fm (Standard analysis) (5)

3= = �0.028(18) (54) ⇥4 · fm 3? = 0.069(25) (120) ⇥4 · fm (Assuming Nc state) (6)
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Figure 5: Simultaneous chiral and continuum fit plotted versus "
2
c

(left) and 0 (right) to get the nEDM
due to the topological term. These data were obtained using the standard analysis to remove excited-state
contamination.

5

DW + Overlap quarks: [K.-F.Liu et al, PRELIMINARY]:  
• partial-V4 sampling of Q 
• partial quenching to explore mq dependence

Challenges:  
• effect of θQCD vanishes at mq➞mqphys; 

chiral symmetry important 

• noise in global Q=∫FF̃ grows with V4 

• Q2 ➞ 0 extrapolation(*)

calculation of the quark spin [3] . We can use this property of the overlap fermion which satisfies AWI to do an
interpolation with the zero pion mass point set to zero. The interpolation formula is based on the chiral
perturbation theory which includes a logarithmic dependence on the pion mass, i.e., d = A✓̄e(m2

⇡ ln(m2
⇡/m

2
N

).

Fixing the nEDM to be zero at zero pion mass and interpolating from heavier valence pion masses has
decreased the error of the nEDM at the physical pion mass at 139 MeV more than by directly calculating it at
the physical pion point. This is a unique feature of the overlap fermion. Of course, it would be desirable also to
calculate the nEDM at the physical pion mass of 139 MeV. However, based on the present interpolation result,
one would need many times the statistics than what we have now to reach the same level of precision.

Figure 1. The neutron electric dipole moment as a function of m
2
⇡ as extrapolated from three heavier pion masses.

The red points indicate the values at the physical pion mass. The left panel is the fit for the unitary case where
the sea and valence quark masses are the same. The right panel is for the partially quenched case.

One can do better. As we explained in Sec. 1, the overlap fermion matrix has a multi-mass feature which
allows matrix inversion of multiple masses with very little overhead. We tapped this feature and calculated 4
masses for each of the lattices with di↵erent sea mass. The results and the fit are plotted in the right panel of
Fig. 1. We see that there is a peculiar feature in that the partially quenched cases as a function of the valence
pion mass seem to be oblique compared to those of the unitary case. This feature has been predicted in partially
quenched chiral perturbation theory[4] with the formula

dn =
e✓̄ms

4⇡2 f 2

"
F⇡ log

 
M

2
v

µ2

!
+ FJ log

 
M

2
vs

µ2

!#
+
✓̄e

⇤2
�


ms

2
c (µ) + d (ms � mv) + f qil (ms � mv)

�
, (1)

where there are terms that are proportional to the di↵erence between the valence and sea quark masses, namely
ms � mv, Inspired by this, we have done a global fit with di↵erent sea and valence pion masses with the partially
quenched chiral perturbation theory with the fitting formula

dn = CM
2
s
+ D

⇣
M

2
s
� M

2
v

⌘
(2)

where Ms is the sea pion mass, Mv is the valence pion mass, and C, and D are free parameters. For these
preliminary results, we used the linear fit. When we have more data and more precise results, we will fit with the
log term. The results and the fit are plotted in Fig. 1. We see that the final answer of d = �0.00093(13) at the
physical pion mass from the global fit of the partially quenched case agrees with that using only 3 unitary points
(left panel) but with ⇠ 1/2 the error.

We are still accumulating data on the 24I and will have a publication soon.

3 Goal of this proposal

Our goal of the current proposal is to repeat the calculation of the neutron and proton EDM for three 32I lattices
with 3 sea quark masses listed in Table 1 so that we can combine with those from the three 24I lattice to do a
combined fitting to get some estimate of the O(a2) error toward the continuum. Both 24I and 32I lattices have
pion masses between 300 MeV and 500 MeV, thus we expect similar size of errors for the EDM from these sets

2

d N d N

m2
⇡m2

⇡

Figure 26: The results of dn from this paper, improved in light blue and not-improved in dark blue,
compared to other lattice QCD results [4, 3, 1]. The light blue bands correspond to a chiral
extrapolation, using the improved data (light blue), after having performed the continuum limit as
described in sec. 6.2. To perform the rotation of the CP odd form factor F3 of other lattice calculations
see the main text. We underline that our error determination for other works is purely illustrative since,
not having at our disposal the raw data, we do not take into account correlations in the data.

37

Wilson-Clover quarks  
[J.Dragos et al,1902.03254]
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Topological Charge with Gradient Flow
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[M.Luscher, JHEP08:071; 1006.4518]
Gradient flow: covariant 4D-diffusion  
of quantum fields with "G.F." time tGF:

Tree-level: Bµ(x, tGF) /
Z

d4y exp
h
� (x� y)2

4tGF

i
Aµ(y)

d

dtGF
Bµ(tGF) = DµGµ⌫(tGF) , Bµ(0) = Aµ

Gradient-flowed topological charge: Q̃(tGF) =

Z
d4x

g2

32⇡2

h
Gµ⌫

eGµ⌫

i ���
tGF

total top. charge on 20 randomly  
chosen gauge configurations effective scale 𝛬UV → (tGF)-1/2  

⟹ renormalization prescription 

smooth fields (reduce |G𝜇𝜈| )  
⟹ continuous "cooling" 

remove G𝜇𝜈 dislocations 
⟹ separation of top. sectors 
[M.Luscher, JHEP08:071; 1006.4518]
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Topological Charge with Gradient Flow

[M.Luscher, JHEP08:071; 1006.4518]
Gradient flow: covariant 4D-diffusion  
of quantum fields with "G.F." time tGF:

Tree-level: Bµ(x, tGF) /
Z

d4y exp
h
� (x� y)2

4tGF

i
Aµ(y)

d

dtGF
Bµ(tGF) = DµGµ⌫(tGF) , Bµ(0) = Aµ

Gradient-flowed topological charge: Q̃(tGF) =

Z
d4x

g2

32⇡2

h
Gµ⌫

eGµ⌫

i ���
tGF

tGF = 0 tGF = a2

tGF = 2a2 tGF = 4a2

Lx = 24a

effective scale 𝛬UV → (tGF)-1/2  

⟹ renormalization prescription 

smooth fields (reduce |G𝜇𝜈| )  
⟹ continuous "cooling" 

remove G𝜇𝜈 dislocations 
⟹ separation of top. sectors 
[M.Luscher, JHEP08:071; 1006.4518]

q̃(tGF) =
g2

32⇡2

h
Gµ⌫

eGµ⌫

i ���
tGF

/ Ẽ · H̃⇒
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Nucleon EDM from Quark and Gluon cEDM

Calculation of nEDM on the lattice Tanmoy Bhattacharya
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j" (mixed, green points in the middle) susceptibilities for the a09m130 ensemble.

where the second errors are estimates of the systematics other than due to the excited-state spectrum.

3. Weinberg Three-Gluon Operator

The Weinberg three-gluon operator mixes with other operators of the same dimension, and with
lower dimension operators like the topological term. The latter mixing is especially problematic
since this diverges as we take the continuum limit. In the gradient-flow scheme [16], however,
the flow-time acts as a gauge- and Lorentz-symmetric hard ultraviolet cuto�, even as the chiral
and rotational symmetric breaking lattice artifacts vanish in the continuum limit 0 ! 0. Thus, in
this scheme, the matrix elements of the Weinberg operator have a finite continuum limit, but do
have a $ (1/Cgf) mixing with the lower dimensional topological charge [21], a log Cgf mixing with
operators of the same dimension, and an $ (Cgf) mixing with higher dimension operators. As a
result, in contrast with the almost flow-time independent topological susceptibility, the Weinberg
and mixed susceptibilities have a strong dependence on the flow time, as shown in Fig. 6. In
addition, the �3 calculated from the matrix element of the product of the vector current and the
Weinberg operator, needs the subtraction of a log Cgf dependent contribution from the quark-EDM
operator.
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Figure 7: The simultaneous chiral (right) continuum (left) extrapolation of nEDM due to Weinberg operator
in the gradient-flow scheme at ggf ⇡ 0.34 fm.
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Figure 9: Example of fits to remove ESC in the three-point function of the imaginary part+4 in the presence
of a cEDM on the 3 quark. The rest is similar to Fig. 4.

where �4(G) = k̄(G))3
W4W5k(G), ⇠ ⌘ 8 k̄f`a

W5⌧`a)
3
k, % ⌘ k̄8W5)

3
k, G ⌘  , H ⌘ 2<0 + �, and

the bar denotes division by 1+1�<0. We can determine 2̄�, Ḡ and H̄ by fitting the LHS to a constant;
in practice, we first determine 2̄� to make the LHS a constant over a large range in Euclidean time,
and then determine Ḡ and H̄ to extend the region holding 2̄� fixed. In terms of these, the three

isovector operators
�
0⇠ � � %

0

�
,
⇣
H̄

Ḡ
� �

⌘
%

0
, and

⇣
1 � �Ḡ

H̄

⌘
0⇠ are related by the Ward identity, and

describe the same physics! Note that the coe�cient Ḡ is zero if all $ (0) chiral symmetry breaking
is removed by nonperturbatively tuning the coe�cient 2(, of the clover term. But, as is clear from
the equations, the physical e�ects of the isovector operator % are enhanced by one inverse power
of <0, so a small mistuning gives a large contribution. By the same token, any $ (02) e�ect in the
determination of Ḡ/H̄ from the Ward identity have a large e�ect on the determination of �3. As a
result, the di�erent determinations of the contribution of the cEDM operator do not agree, as shown
in Fig. 8; leading to a large systematic error in the determination of �3.

In addition to this uncertainty, the assumed spectrum of intermediate states that contribute
significantly to the three-point function also makes a large di�erence in the determination. Fig. 9
illustrates this uncertainty. Finally, we show a preliminary chiral-continuum extrapolation of the
results in Fig. 10. The errors indicated here are only statistical.
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Figure 10: Chiral-continuum extrapolation of nEDM due to cEDM using the fit ansatz: 3# = 21+22"
2
c
+230

giving �0.18(17) at the physical point. A fit to 02 has almost same quality and the same extrapolated value.
On each ensemble, the excited state contamination is removed using the standard analysis based on the
spectrum from the nucleon two-point function.

8

Wilson-Clover quarks  
[T.Bhattacharya, Lattice 2021; 2203.03746]

Challenges:  
• renormalization & mixing  

with lower-dim operators  
(e.g. dim-4 FF̃ ➞ θQCD-nEDM) 

• quark cEDM (dim-5):  
quark-disconnected contractions  
for vector current and cEDM  

• Weinberg term (dim-6):  
gluon noise 

• dim-6 CPv: Weinberg term ( ~F⋅F⋅F̃ ):

• dim-5 CPv: quark cEDM ( q̅ (σ⋅F) 𝛾5q ) :

Renormalization & mixing  
with Gradient Flow:  
[Mereghetti et al 2111.11449; 
J.Kim et al 2106.07633] 
• novel nonperturbative scheme 
• small tGF expansion 

⟹matching to pertrubative 

• avoid power divergences
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Nucleon&Nuclear EDMs: Summary/Challenges

 Single-nucleon EDM 
θQCD-induced nEDM : ongoing work; some extrapolated results 

potentially challenging at the physical point 
Higher-dim effective operators 

quark/gluon cEDM mixing/renormalization tractable with Gradient flow  
very noisy / weak "signal" -> straightforward with improved statistics 
4-quark CPv just starting; potentially challenging due to quark loops 
depend on precision of θQCD-induced nEDM due to mixing 

Multi-nucleon EDM and CPv NN interaction 
extremely challenging, will need EFTs
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Baryon Number Violation: Proton Decay
5.1 Theoretical Perspectives on Proton Decay 113

SU(5) is the simplest grand unified group, and it turns out to be the most predictive as regards proton
lifetime and the unification of the three gauge couplings, owing to small GUT scale threshold e↵ects. The
minimal non-supersymmetric version of SU(5) [3] has already been excluded by the experimental lower limit
on p ! e+⇡0 lifetime and the mismatch of the three gauge couplings when extrapolated to high energies (see
left panel of Fig. 5-1). Yet low energy supersymmetry, which is independently motivated by the naturalness
of the Higgs boson mass, provides a simple solution to these problems of SU(5), as it increases the prediction
of the lifetime for the decay process p ! e+⇡0 due to the larger value of MX and also corrects the unification
mismatch (see right panel of Fig. 5-1) [5].

Supersymmetric grand unified theories (SUSY GUTs) [9],[10],[11]–[14] are natural extensions of the Standard
Model that preserve the attractive features of GUTs such as quantization of electric charge, and lead to the
unification of the three gauge couplings. They also explain the existence of the weak scale, which is much
smaller than the GUT scale, and provide a dark matter candidate in the lightest SUSY particle. Low energy
SUSY brings in a new twist to proton decay, however, as it predicts a new decay mode p ! ⌫K+ that would
be mediated by the colored Higgsino [15],[16], the GUT/SUSY partner of the Higgs doublets (see Fig. 5-2,
right panel). Typically, the lifetime for this mode in many models is shorter than the current experimental
lower limit.

Figure 5-2. Diagrams inducing proton decay in SUSY GUTs. p ! e
+
⇡

0 mediated by X gauge boson
(left), and p ! ⌫K

+ mediated by colored Higgsino (right).

In order to evaluate the lifetimes for the p ! ⌫K+ and p ! e+⇡0 decay modes in SUSY SU(5) [17], a
symmetry breaking sector and a consistent Yukawa coupling sector must be specified. In SU(5), one family
of quarks and leptons is organized as {10 + 5 + 1}, where 10 � {Q, uc, ec}, 5 � {dc, L}, and 1 ⇠ ⌫c. SU(5)
contains 24 gauge bosons, 12 of which are the gluons, W±, Z0 and the photon, while the remaining 12 are
the (X,Y ) bosons that transform as (3, 2, �5/6) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . These bosons have both
diquark and leptoquark couplings, which lead to baryon number violating processes. The diagram leading to
the decay p ! e+⇡0 is shown in Fig. 5-2, left panel. SU(5) breaks down to the Standard Model symmetry in
the supersymmetric limit by employing a 24H Higgs boson. Additionally, a {5H + 5H} pair of Higgs bosons
is employed, for electroweak symmetry breaking and the generation of quark and lepton masses.

The masses of the super-heavy particles of the theory can be related to low energy observables in minimal
SUSY SU(5) via the renormalization group evolution of the three gauge couplings, which depends through
the threshold correction on MT , the mass of the color triplet Higgsinos which mediate p ! ⌫K+ decay.
In general, agreement with the experimental value of ↵3(MZ) = 0.1184 ± 0.0007 demands the color triplet
mass to be lower than the GUT scale. This tends to lead to a rate of proton decay into ⌫̄K+ which is in
disagreement with observations [18].

Fundamental Physics at the Intensity Frontier

5.1 Theoretical Perspectives on Proton Decay 113
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smaller than the GUT scale, and provide a dark matter candidate in the lightest SUSY particle. Low energy
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be mediated by the colored Higgsino [15],[16], the GUT/SUSY partner of the Higgs doublets (see Fig. 5-2,
right panel). Typically, the lifetime for this mode in many models is shorter than the current experimental
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Figure 5-2. Diagrams inducing proton decay in SUSY GUTs. p ! e
+
⇡

0 mediated by X gauge boson
(left), and p ! ⌫K

+ mediated by colored Higgsino (right).

In order to evaluate the lifetimes for the p ! ⌫K+ and p ! e+⇡0 decay modes in SUSY SU(5) [17], a
symmetry breaking sector and a consistent Yukawa coupling sector must be specified. In SU(5), one family
of quarks and leptons is organized as {10 + 5 + 1}, where 10 � {Q, uc, ec}, 5 � {dc, L}, and 1 ⇠ ⌫c. SU(5)
contains 24 gauge bosons, 12 of which are the gluons, W±, Z0 and the photon, while the remaining 12 are
the (X,Y ) bosons that transform as (3, 2, �5/6) under SU(3)c ⇥ SU(2)L ⇥ U(1)Y . These bosons have both
diquark and leptoquark couplings, which lead to baryon number violating processes. The diagram leading to
the decay p ! e+⇡0 is shown in Fig. 5-2, left panel. SU(5) breaks down to the Standard Model symmetry in
the supersymmetric limit by employing a 24H Higgs boson. Additionally, a {5H + 5H} pair of Higgs bosons
is employed, for electroweak symmetry breaking and the generation of quark and lepton masses.

The masses of the super-heavy particles of the theory can be related to low energy observables in minimal
SUSY SU(5) via the renormalization group evolution of the three gauge couplings, which depends through
the threshold correction on MT , the mass of the color triplet Higgsinos which mediate p ! ⌫K+ decay.
In general, agreement with the experimental value of ↵3(MZ) = 0.1184 ± 0.0007 demands the color triplet
mass to be lower than the GUT scale. This tends to lead to a rate of proton decay into ⌫̄K+ which is in
disagreement with observations [18].
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Proton decay: ΔB=1 violation 
Baryon number = accidental "symmetry" of SM; violated by sphalerons 
Probe scales inaccessible to colliders: Limits on GUT, extra dim., etc 
Limits on stability of nuclear matter

ordinary GUT 
min.SU(5) ruled out by 𝜏(p ➞ e+π0) 
SO(10) probed by next-gen exp.

SUSY GUT [Sakai,Yanagida '82; Weinberg '82] 
min.SUSY-SU(5) ruled out by 𝜏(p ➞ 𝜈K̅+) 
SUSY-SO(10) probed by next-gen exp.

𝜏(p ➞ e+𝜋0) ≳ 1.6⋅1034 , 

𝜏(p ➞ 𝜈K̅+) ≳ 5.9⋅1033   [Super-K] 

Expect x10 limits from Hyper-K, DUNE 
DUNE: sensitive to p ➞ 𝜈K̅+ (SUSY GUT)DUNE (40 kt)

Hyper-K

Hyper-K

10
32
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34

Soudan Frejus Kamiokande

KamLAND

IMB

τ/B (years)

Super-K
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minimal SU(5) minimal SUSY SU(5)
flipped SU(5)

SUSY SO(10)
non-SUSY SO(10) G224D

minimal SUSY SU(5)

SUSY SO(10)

6D SO(10)

non-minimal SUSY SU(5)
predictions

predictions

Alt. explanation of proton stability? 

Multi-meson decay channels?[LBNF and DUNE CDR, R.Acciarri et al (2015)]
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Proton Decay Matrix Elements
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NEW Nf = 2 + 1 mphys
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RBC/UKQCD’17 (Nf = 2 + 1)
RBC/UKQCD’13 (Nf = 2 + 1)
RBC/UKQCD’06 (Nf = 0)
JLQCD’99 (Nf = 0)

Figure 3: Final results for the main proton decay form factor W0 for meson-positron decay [1],
compared to results in Refs. [5, 6, 7]. “Indirect” method results are also shown.

Figure 4: Low-mode averaging contribution to the neutron two-point functions computed with
di↵erent values of the background electric field.

In the Q1-Q3 of 2021-2022 allocation year, we have been able to debug and test our software
that uses low-lying modes of the domain-wall fermion operator and constructs LMA approximation
to the neutron two-point function with all possible polarizations. Our main results have been
obtained on 163 ⇥ 32 lattices and shown in Figs. 4,5.

In Figure 4, we show the neutron e↵ective masses computed from LMA-only contribution to the

4
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FIG. 5: The energy profile including the Casimir energy
(solid). The Skyrmion contribution, as shown in Fig. 3, is
indicated by the dashed line.

in the course of the unwinding, F (rbag) will become less
than ⇡/2, signifying that a mode from the Dirac sea has
been lifted out. Similarly, as the Skymion rewinds, this
same mode will dive back into the sea at some later time
t2. This criss-crossing of F (rbag) = ⇡/2 indicates that
the system has a zero-mode, as shown in the cartoon of
the Dirac sea in Fig. 2. This zero-mode has important,
subtle implications5.

A second consequence of time-dependent boundary
condition absent in Eq (24) is that the Casimir energy
depends on both F (rbag) as well as on its time derivative,
Ḟ (rbag). When manipulated into the bounce action, the
Ḟ terms becomes �̇ terms, and the coe�cient of the �̇2

term will play the role of a ‘mass’ for �. As such, it will
a↵ect the Skyrmion decay rate in a similar fashion to the
K(�) term in Eq. (20).

A. The non-static case

For time-dependent ✓(⌧) = F (rbag�(⌧)), the result of
the fermionic path integral is det(@⌧ +H(⌧)), where we
have recast the time-dependent boundary conditions as
a time-dependent Hamiltonian. In order to calculate the
determinant we have to solve for the eigenvalues. Sup-
pose

(@⌧ +H(⌧))| (⌧)i =  | (⌧)i, (25)

5
By the Atiyah-Patodi-Singer theorem [30–32], if the system at

any given instant has a zero mode solution, the full, time-

dependent system will also exhibit a zero mode solution (see

[33]).

and we define hn(⌧)| to be the eigenstates of H(⌧). We
have

hn(⌧)| @
@⌧

| (⌧)i+ En(⌧)hn(⌧)| (⌧)i =  hn(⌧)| (⌧)i

@

@⌧
hn(⌧)| (⌧)i+ En(⌧)hn(⌧)| (⌧)i� (26)

hṅ(⌧)| (⌧)i = hn(⌧)| (⌧)i

Defining cn(⌧) = hn(⌧)| (⌧)i, we obtain

ċn(⌧) + En(⌧)cn(⌧)�
X

m

hṅ(⌧)|m(⌧)icm(⌧) =  cn(⌧).

(27)
If the boundary conditions are changing slowly, the third
term on the left-hand side is small and can be treated
as a perturbation. We can rewrite the fermionic path
integral as

Z
Dc†Dc exp

h
�

Z
d⌧

�
c†n(⌧)Dnm(⌧)cm(⌧)�

c†n(⌧)Vnm(⌧)cm(⌧)
�i
, (28)

where Dnm(⌧) = (@⌧ + En(⌧)) �nm and Vnm(⌧) =
hṅ(⌧)|m(⌧)i. Treating the first term in the exponent as
the propagator and the second as a perturbation, the re-
sult is

det /D = detDnm exp
hX

connected diagrams
i

(29)

The determinant of Dnm is easily evaluated because it
is a disconnected set of one dimensional equations. The
eigenfunctions cn(⌧) are

cn(⌧) = exp

"
⌧ �

Z ⌧

�T
2

d⌧ 0En(⌧
0)

#
. (30)

To determine , we impose anti-periodic temporal
boundary conditions, cn(T/2) + cn(�T/2) = 0:

T �
Z T

2

�T
2

d⌧ 0 En(⌧
0) = 2⇡ i

⇣
m+

1

2

⌘
! (31)

 = i
2⇡(m+ 1

2 )

T
+

1

T

Z T
2

�T
2

d⌧ 0 En(⌧
0) ⌘ i!m + Ēn,

where Ēn =
1

T

Z T/2

�T/2
d⌧ En(⌧) (32)

In appendix A we provide an explicit calculation of
detDnm, determined by the product over all . The re-
sult, for time-dependent boundary conditions, is

detDnm = exp[�T Ecas] (33)

T Ecas = �1

2
T
X

n

|Ēn| = �1

2

X

n

����
Z

d⌧En(⌧)

���� .

Therefore, working to lowest order in an adiabatic ap-
proximation, we see that the functional determinant is

Conjecture [A.Martin, G.Stavenga '12] 
Topological stability of "Chiral Bag" proton :  

h a  ̄bi

Skyrmion 
(fig. [Zhang et al]) Free-Quark "Bag"

Is proton inherently stable?

⟹NO SUPPRESSION  
at physical quark masses 

Lattice calculations with  
chirally-symmetric quarks: 

Prev. at m𝜋 ≳300 MeV 
[S.Aoki et al (2000)]  
[Y.Aoki et al (2006),  
(2013), (2017)]  
Physical quarks  
[J.Yoo, PRD'22] 

NEXT: p→𝜋𝜋, p→𝜋K
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Nucleon decay constants 
(p→3𝓁 decays; LO ChPT p → K𝓁̅ , 𝜋𝓁̅)

Nucleon-to-meson amplitudes 
( p → 𝜋𝓁̅, K𝓁̅,   decays)
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Baryon Number Violation : Neutron Oscillation

NN̅ oscillation: ΔB = 2 = Δ(B–L) violation 
𝜏(56Fe) ≳ 0.72⋅1032 yr   

⟹ 𝜏NN̅ ≳ 1.4⋅108 s [Soudan] 

𝜏(16O) ≳ 1.77⋅1032  yr  
⟹ 𝜏NN̅ ≳ 3.3⋅108 s  [Super-K] 

𝜏(2H) ≳ 0.54⋅1032  yr  
⟹ 𝜏NN̅ ≳ 1.96⋅108 s  [SNO] 

Quasi-free reactor neutrons 
𝜏NN̅ ≳ 108 s  [ILL'94]

Soudan Super Kamiokande SNO

GUT + massive Majorana lepton?   
[T.K.Kuo, S.T.Love, PRL45:93 (1980)] 

partial unification and (B–L) viol.?  
[R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

~ (BSM scale)–5 
MX  ≳ (200–300) TeV

N-N̅ amplitude

�m = �⇥n̄|
Z
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i |n⇤
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⇥
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oscillation time
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there exists a self-coupling of the scalar multiplet 4~ ~ as follows:
Z =X[~*"0""'a . '~ 'a 'a '+(L, -a)+H.c.j.

From Eqs. (2), (3), and (5), it follows that there exists a six-fermion vertex of type (see Fig. 1)
(5)

where the Greek letters a, P, . . . denote color.
This Lagrangian causes the transition n—n
which we call neutron oscillation. " The impor-
tant point, which becomes obvious looking at Fig.
1, is that the AB =2 n-n transition is caused by
the same spontaneous breaking mechanism (i.e. ,
(b,s,g& 0) that causes &I & 0. We now estimate
the strength of the rt-n transition It«t= Ak'(b, s «)/
m~ '. We see that as (hn «)—0 (i.e. , restora-
tion of parity as well as B—L symmetry), the n
n oscillation disappear. We may choose the coup-
ling A-10 ' (since it is related to the mass of the
heavy Majorana neutrino') and it becomes of in-
terest to relate the characteristic time t„-„for
the neutron oscillation to m». If we use the lim-
iting lifetime resulting from the observed nuclear
stability, "of 10"yr, this corresponds to m~~
=10 GeV and t„„-=10'sec.' We stress that in
our "minimal" model (without any additional
Higgs beyond those already introduced), the pro-
ton is stable. " This is just the reverse of the
situation with the "minimal" SU(5) model where
AB = 2 transitions are forbidden. "
Thus, baryon number nonconservation —&vith or

without 8 —L conservation becomes a very.
interesting test of unification models. It would
seem that essentially the same experimental set-
up as the one which will be used to search for
proton decay could yield information about AB= 2
nucleon transitions. " The observation of such

g.P9

~v)
P&

FIG. 1. The tree graph that induces the six-fermion
A&=2 vertex that leads to n n oscillation.

transitions without proton decay would be strong
evidence for the existence of a "partial unifica-
tion" model of the type that we are considering.
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was supported in part by the National Science
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completely inaccessible to experimental observa-
tion.
The above argument is predicated on the as-

sumption that there is only one mass scale, the
unification mass M. It is possible to change the
above result provided another mass scale be-
comes relevant. This can happen in processes
which do not conserve weak isospin. For in-
stance, a neutral lepton, /&', might acquire a
Majorana mass, m, o, via the M'„„z=1 transition
lL'- (lz')'. Such a coupling can be instrumental
in allowing for 48 =2 processes. A prototype of
such a process is given by the diagram of Fig. 1.
Note that, because of B-I conservation for 4B
=1 processes, it is necessary to have the transi-
tion lL'- (lL')' in order to mediate the hB =2 tran-
sition.
If all such neutral leptons acquire their masses

through the superheavy Higgs sector, then nz, o is
necessarily of order' nGUGF 'M ', where +GU is
the fine structure constant of the grand unifica-
tion group and GF = 10 'I„' is the Fermi con-
stant. In this case, the effective couplings for
ff(~ =2) are again of order M ', and we are

back where we started. On the other hand, if
massive leptons exist with a mass m, o such that
o.GUGF 'M '«m, o«M, then kgf f(&B =2) has an

C0

dc

U

FIG. 1. Feynman diagram contributing to the neutron-
antineutron transition. The transition is mediated by
the exchange of two superheavy vector bosons and in-
volves the mixing of a massive neutral lepton with its
charge conjugate. This mixing is represented by the
blob.

effective coupling of order M 4. This leads to a
7„„comparable to v~.
To make things more definite, we now give a

crude estimate of Sn by approximately evaluating
the contribution from the superheavy vector ex-
change diagram of Fig. 1 with use of SU(5) as the
underlying grand-unification group. This is done
by collapsing the vector lines and using the effec-
tive four-Fermi interaction

(fLGU/M )es2« ~8 ~ [u ~s 'y„dqL] [lL y"d.,]+H.c. . (4)

Here E~ is a Cabibbolike mixing factor for the lep-
ton sector. Note that, under our hypothesis of a
massive neutral lepton, ~~ cannot be "rotated
away. " We also emphasize that' && need not be
related to the Cabibbo mixing factors appearing
in the couplings of the usual lV boson to the lep-
tons. Since the effective couplings of Efl. (4) are
implicitly defined at the unification scale M and
we eventually want to take matrix elements be-
bveen neutron and antineutron states, we must
include an enhancement factor due to quantum-
chromodynamics (QCD) renormalizations occur-
ring behveen the unification scale and the neutron
mass scale p (=1 GeV). This enhancement factor

is given by'

A =[&~(P)/cfGU]

where the exponent E is 4/(11 ——',f), and where
n, (1L) is the QCD coupling at the scale p and f is
the number of quark flavors. W'e now make the
drastic approximation of collapsing the lepton
lines and inserting a factor of m, o/m„'. While
this may be a very crude procedure, we do not
expect it to change the order of magnitude of our
estimate. After making a Fierz transformation
and including all the factors, the contribution of
Fig. 1 may be written as

2

pff 4 '2 e~8ff A(e&&peg&z +Kg&Le~&&)[d~L'd~L][d&~'ug~l[d„z'u~z] (6)

The matrix element (N I
—Id'x Z.«(x) I iV) can now

I obtainbe evaluated using nonrelativistic SU(6) wave func-
tions for N and N and by applying nonrelativistic
limits to the field operators in Efl. (6). We thus
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Lattice QCD Result: Enhanced N⇔N̅

MIT Bag model results from [S.Rao, R.Shrock, PLB116:238 (1982)]

Lattice QCD with physical-mass, chiral-symmetric quarks: 
x(5-10) larger N-Nbar oscillation vs. nucleon Bag model  

[E.Rinaldi, S.S., M.Wagman, et al, PRD99:074510 (2019)] 
[E.Rinaldi, S.S., M.Wagman, et al, PRL122:162(2018)]

[10�5 GeV�6] [10�5 GeV�6] [10�5 GeV�6]

OMS(2 GeV) Bag “A” LQCD
Bag “A” Bag “B” LQCD

Bag “B”

[(RRR)3] 0 0 � 0 �
[(RRR)1] 45.4(5.6) 8.190 5.5 6.660 6.8
[R1(LL)0] 44.0(4.1) 7.230 6.1 6.090 7.2
[(RR)1L0] -66.6(7.7) -9.540 7.0 -8.160 8.1
[(RR)2L1](1) -2.12(26) 1.260 -1.7 -0.666 3.2
[(RR)2L1](2) 0.531(64) -0.314 -1.7 0.167 3.2
[(RR)2L1](3) -1.06(13) 0.630 -1.7 -0.330 3.2t

Next steps: non-quasi-free oscillation 
full systematic UQ : finite volume, continuum limit 
"crossed" 2-neutron annihilation amplitudes ⟨vac|O6q|nn⟩ 
Nuclear medium effects
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Neutrinoless Double-Beta Decay

0𝞶2β : Experimental window into 
Neutrino mass mechanism 
mass hierarchy 
leptogenesis (LNV ⟹ BNV thru spalerons) 
scale of BSM 

Experiments 
current : NEMO3, KamLAND-Zen, EXO-200,  
Majorana, GERDA, CUORE, CUPID 
Next-gen: x100 lifetime constraints 
 (e.g. ton-range nEXO (1t 136Xe)  

LNV mechanisms:  
light Majorana neutrino? – only in 0𝞶2β 
low-scale seesaw? 
BSM at TeV scale? 
neutrion flavor models

|m�� | = |miU
2
ei|  10�2eV

�0⌫�� / |m�� |2 |M0⌫ |2

19

FIG. 10. The tower of EFTs for 0⌫�� decay. At the electroweak scale, LNV operators are described
by operators of odd dimension in the SMEFT. Heavy SM degrees of freedom can be integrated out by
matching SMEFT onto LEFT (denoted as SMEFT0 in the figure). Quark-level operators are then matched
onto hadronic operators. The construction of hadronic operators is performed in �PT and chiral EFT,
while the determination of the low-energy couplings requires non-perturbative techniques, such as lattice
QCD. The 0⌫�� transition operators constructed in chiral EFT are then evaluated with nuclear many-body
methods. Figure is adapted from Ref. [76].

without sterile neutrinos, can be matched to a SU(3)c ⇥ Uem(1) EFT (low-energy EFT or LEFT).
The matching has been worked out for dimension-7 interactions and most dimension-9 operators, at
tree level and including QCD evolution at leading logarithms [44, 76, 77, 145]. The next step down
in energy consists in matching the LEFT onto theories with hadronic degrees of freedom, which
can then be used to derive 0⌫�� transition operators and calculate NMEs. For the dimension-5
Weinberg operator, this step has a long history [9, 146–148]. For higher-dimensional operators, the
hadronization was carried out in specific models [143, 147, 149]. A first EFT-based approach was
developed in Refs. [73, 150] and later reviewed in Ref. [151], which however relied on a factorization
assumption to parametrize nucleon-level operators.

The hadronic representation of LNV LEFT operators can be constructed more rigorously by
using low-energy EFTs of QCD, which encode the symmetries of QCD, in particular chiral symme-
try, and organize hadronic interactions in a systematic expansion in ✏� = Q/⇤�, with ⇤� ⇠ 1 GeV
and Q denoting low-energy scales of order of the pion mass. In the mesonic and single-nucleon
sector, interactions can be constructed in chiral perturbation theory (�PT) [152–154]. The exten-

nuclear matrix elements 
lattice QCD + EFT + many-body

[Cirigliano et al,  
1806.02780]



Nucleon & Nuclear Inputs to BSM Searches SNOWMASS RPF,  May 17, 2022

  

Sergey Syritsyn (SBU)

EFTs for 0𝞶2β

LNV operators in SM EFT: dim-5,7,9 [Prezeau et al, '03] 
dim-5, dim-7 ⟹ Long-range LNV 
dim-9 ⟹ Short-range, 𝜋-range LNV 
dim-5,7,9 ⟹ short-range contact conteractions in Chiral EFT

[2203.12169]

20

Dim 5

n n

n

e-

n

e-

n

n p

p n

n p

p

e-

e-

Dim 7

d u

e-
n

e-
n

n

n p

p

e-

n p

e-

e-

n p

u

ud

d

e-

e-

n p

e-

e-

n p

n p

e-

n p

e-

n p

e-

n p

e-

p

p

p

Dim 9

5a) 5b)

7a) 7b)

9a) 9b) 9c)

FIG. 11. Matching between e↵ective operators in the LEFT and chiral EFT. The left-hand side denotes
representative dimension-5, -7 and -9 LNV operators in the LEFT, after integrating out heavy degrees of
freedom. Plain lines denote quarks and leptons, while dashed lines Higgs fields. When matching onto LEFT,
the Higgs fields are, in most cases, replaced by the Higgs vacuum expectation value. The diagrams on the
right-hand-side denote leading contributions to the 0⌫�� operators. Double, dashed and plain lines denote
nucleons, pions and leptons, respectively. The blue bubbles denote nucleon form factors, which subsume
pion-range contributions to the pseudoscalar form factor and to the induced pseudoscalar component of the
axial form factor. LNV interactions are denoted by a black square.

sion of �PT to the multi-nucleon sector is often called chiral EFT [155]. The power counting in
chiral EFT is significantly more complicated due to the non-perturbative nature of nuclear forces,
which often requires to modify the naive scaling of contact interactions in order to obtain results
that are explicitly independent of regulators introduced to solve the nuclear few- and many-body
problem [156, 157].

The application of �PT and chiral EFT ideas to 0⌫�� decay was pioneered in Ref. [74], which
performed the first systematic study of the hadronization of dimension-9 operators and of the con-
struction of the transition operator in �PT, and pointed out the dominance of pionic contributions
for several dimension-9 operators. In the case of specific models (R-parity-violating supersymme-
try) the importance of pion interactions was also noticed in Ref. [158]. Continuing the path of
Ref. [74], Ref. [92] consistently applied chiral EFT with Weinberg’s power counting to assess the
order at which a long-distance pion enhancement first appears in the chiral expansion of dimension-
9 operators, reproducing and extending to next-to-next lowest order the power counting results
of Ref. [74]. A derivation of the chiral EFT realization of dimension-5, -7 and -9 operators was
carried out in Refs. [76, 77, 159], with a study of the internal consistency of the transition operators
induced by long-range neutrino and pion exchanges performed in Refs. [76, 160, 161]. These works
were extended to SMEFT operators involving light sterile neutrinos in Ref. [162]. The matching
between quark-level and hadron-level operators is schematically illustrated in Fig. 11.

Dimension-5 and -7 operators typically induce LNV interactions involving light neutrinos, with

SM EFT Chiral EFT
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FIG. 2. An example of our lattice results for di↵erent op-
erators on the near physical pion mass ensemble with a '
0.12 fm.

where C
3pt
i

is the three-point function with a four-quark
operator labeled by i at t = 0 and the sink (source) at
time tf = t (ti = T � t),

C
3pt
i

(tf , ti) =
X

x,y,↵

h↵|⇧+(tf ,x)Oi(0,0)⇧
+(ti,y)|↵i

⇥ e
�E↵T (4)

where ↵ labels QCD eigenstates, and the pion interpo-
lating field is ⇧+ = (⇧�)† = d̄�5u. C⇡ is the pion corre-
lation function. Using relativistic normalization,

C⇡(t) =
X

x

X

↵

h↵|⇧+(t,x)⇧�(0,0)|↵ie
�E↵T

=
X

n

|Z
⇡
n
|
2

2E⇡
n

⇣
e
�E

⇡
nt + e

�E
⇡
n(T�t)

⌘
+ · · · , (5)

where Z
⇡
n

= h⌦|⇧+
|ni, ⌦ represents the QCD vacuum,

and the · · · represent thermally suppressed terms. One
can show that the ratio correlation function is given in
lattice units by

Ri(t) =
a
4
h⇡|O

++
i+ |⇡i

(a2Z⇡
0 )

2
+ Re.s.(t) , (6)

where |⇡i is the ground state pion and the excited state
contributions are suppressed exponentially by their mass
gap relative to the pion mass, Re.s.(t) / e

�(E⇡
n�E

⇡
0 )t.

The overlap factors Z0
⇡
are determined in the analysis of

the two-point pion correlation functions. For brevity we
henceforth write the matrix elements of these operators
as Oi = h⇡|O

++
i+ |⇡i and attach a prime as appropriate.

We find excellent signals on nearly all ensembles, re-
quiring only a simple fit to a constant. This is likely
due to the fact that in the ratio defined in Equation 3
the contribution from the lowest thermal pion state is
eliminated, which we find to be the leading contamina-
tion to the pion correlation function within the relevant

time range. We also find little variation of the ratio us-
ing either wall or point sources. This gives us additional
confidence that excited state contamination is negligible
within the time range plotted in the left panel of Figure 2.
A preliminary version of this analysis was presented in
Ref. [61]. Excited state contamination is studied further
in the Supplementary Material.
After extracting the matrix elements on each ensem-

ble, we perform extrapolations to the continuum, physi-
cal pion mass, and infinite volume limits. It is straight-
forward to include these new operators in Chiral Pertur-
bation Theory (�PT) [62] and to derive the virtual pion
corrections which arise at next-to-leading order (NLO)
in the chiral expansions,

O1 =
�1⇤4

�

(4⇡)2


1 + ✏

2
⇡

�
ln(✏2

⇡
) � 1 + c1

� �
,

O2 =
�2⇤4

�

(4⇡)2


1 + ✏

2
⇡

�
ln(✏2

⇡
) � 1 + c2

� �
,

O3

✏2
⇡

=
�3⇤4

�

(4⇡)2


1 � ✏

2
⇡

�
3 ln(✏2

⇡
) + 1 � c3

� �
, (7)

as described in some detail in the supplemental material.
In these expressions

⇤� = 4⇡F⇡ , ✏⇡ =
m⇡

⇤�

, (8)

where F⇡ = F⇡(m⇡) is the pion decay constant at a given
pion mass, normalized to be F

phys
⇡

= 92.2 MeV at the
physical pion mass, ⇤� is the chiral symmetry breaking
scale and ✏

2
⇡
is the small expansion parameter for �PT.

The pion matrix elements for O
0++
1+ and O

0++
2+ have an

identical form to O
++
1+ and O

++
2+ respectively but have in-

dependent low-energy constants (LECs), �0
i
and c

0
i
which

describe the pion mass dependence. These expressions
can be generalized to incorporate finite lattice spacing
corrections [63] arising from the particular lattice action
we have used [40] and finite volume corrections [64] which
arise from virtual pions that are sensitive to the finite
periodic volume used in the calculations. Details of the
derivation of the formula in �PT and the extension to
incorporate these lattice QCD systematic e↵ects are pre-
sented in the supplemental material. In addition to the
matrix elements Oi, the various LECs �i and ci are de-
termined in this work.
The lattice QCD results are renormalized non-

perturbatively following the Rome-Southampton
method [65] with a non-exceptional kinematics-
symmetric point [66]. More precisely, we compute the
relevant Z-matrix in the RI/SMOM (�µ, �µ)-scheme [67].
We implement momentum sources [68] to achieve a high
statistical precision and non-perturbative scale evolution
techniques [69, 70] to run the Z-factors to the common
scale of µ = 3 GeV. Further details about the renor-
malization procedure are provided in the supplemental

⟨𝜋+|O4q|𝜋–⟩  [Nicholson et al, PRL'18, 1805.02634]
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TABLE II. Resulting matrix elements extrapolated to the
physical point, renormalized in RI/SMOM and MS, both at
µ = 3 GeV.

RI/SMOM MS

Oi[GeV]4 µ = 3 GeV µ = 3 GeV

O1 �1.91(13) ⇥ 10�2 �1.89(13) ⇥ 10�2

O
0
1 �7.22(49) ⇥ 10�2 �7.81(54) ⇥ 10�2

O2 �3.68(31) ⇥ 10�2 �3.77(32) ⇥ 10�2

O
0
2 1.16(10) ⇥ 10�2 1.23(11) ⇥ 10�2

O3 1.85(10) ⇥ 10�4 1.86(10) ⇥ 10�4

material. One advantage of our mixed-action setup is
that the renormalization pattern is the same as in the
continuum (to a very good approximation) and does not
require the spurious subtraction of operators of di↵erent
chirality.

The renormalized operators, extrapolated to the con-
tinuum, infinite volume, and physical pion mass (defined
by m

phys
⇡

= 139.57 MeV and F
phys
⇡

= 92.2 MeV) limits
are given in Table II in both RI/SMOM and MS schemes
at µ = 3 GeV. An error breakdown for the statistical
and various systematic uncertainties is given in the sup-
plemental material.

The correlation between these RI-SMOM matrix ele-
ments are given in the supplemental material. The ex-
trapolations of these operators to the physical point are
presented in Figure 3 with the dashed vertical line rep-
resenting the physical pion mass. The small value of O3

reflects the fact that the O
++
3+ operator is suppressed in

the chiral expansion, vanishing in the chiral limit. In ad-
dition to the full MAEFT extrapolations (including infi-
nite volume), we performed further extrapolations with-
out including mixed-action and/or finite volume e↵ects,
and found all results to be consistent, indicating that
mixed-action and finite volume e↵ects are mild. These
various analysis options are all available in Ref. [71] pro-
vided with this publication. Loss function minimization
is performed using Ref. [72].

We can compare the values of the matrix elements de-
termined here in MS to those in Ref. [73], which used
SU(3) flavor symmetry to determine the values, includ-
ing estimated SU(3) flavor-breaking corrections at NLO
in SU(3) �PT. Noting the di↵erences in operator def-
inition pointed out in footnote 5 of Ref. [73], we find
the values of the matrix elements tend to agree at the
one- to two-sigma level, as measured by the O(20�40%)
uncertainties in Ref. [73], indicating the SU(3) chiral ex-
pansion is reasonably well behaved. With the ⇠ 1000
measurements per ensemble in the LQCD calculation
presented here, the uncertainties have been reduced to
O(5 � 9%). The resulting LECs are reported in Tab. III
in the supplemental material and the full covariance be-
tween them is provided in Ref. [71].
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FIG. 3. The interpolation of the various matrix elements
(color coded as in Figure 2). In the bottom panel, a zoomed in
version of O3 is displayed. The resulting fit curves/bands are
constructed with ⇤� held fixed while changing ✏⇡ and so the
corresponding LQCD results are adjusted by (F phys

⇡ /F
latt
⇡ )4

for each lattice ensemble to be consistent with this interpola-
tion. The bands represent the 68% confidence interval of the
continuum, infinite volume extrapolated value of the matrix
elements. The vertical gray band highlights the physical pion
mass.

From the matrix element O3 we can determine the
value of B⇡, the bag parameter of neutral meson mix-
ing in the Standard Model, B⇡ = O3/(

8
3m

2
⇡
F

2
⇡
) =

0.420(23) [0.421(23)] in the RI/SMOM [MS] scheme at
µ = 3 GeV. This is a rather low value, indicating a
large deviation from the vacuum saturation approxima-
tion. However this is expected from the chiral behavior
as discussed, for example, in Ref. [74–76]. As displayed
in Figure 5 in the supplemental material, the value of B⇡

increases at larger pion masses, as expected.

Discussion.– We have performed the first LQCD cal-
culation of hadronic matrix elements for short-range op-
erators contributing to 0⌫��. This calculation is com-
plete for matrix elements contributing to leading order
in �PT, including extrapolation to the physical point in
both lattice spacing and pion mass. We have also per-
formed calculations directly at the physical pion mass.

Given these ⇡
�

! ⇡
+ matrix elements, the nuclear

beta decay rate can be determined by constructing the

Short-Range LNV ~(MBSM)–1   

comparable in See-Saw models to  
Long-Range LNV~ (chirality flip) ~ mββ ~ (MBSM)–1

2

shown in the left panel of Figure 1. More recent EFT
analyses for operators relevant to 0⌫�� have indicated
that the contact operators, NNNNee, may be enhanced
in which case they would also appear at LO [26].

h⌦|⇧+(tf ,pf)O(0)⇧+(ti,pi)|⌦i

FIG. 1. Left: the leading order contribution to 0⌫�� via
short-range operators occurs within a long-distance pion ex-
change diagram. The nucleons (solid lines) exchange charged
pions (dashed), which emit two electrons (lines with arrow-
heads). Right: the LECs associated with the operators in
the left panel may be calculated through a simpler ⇡� ! ⇡

+

transition. Here, the lines represent quarks.

In this Letter we determine the matrix elements of the
relevant ⇡⇡ee operators and their associated low energy
constants (LECs) for chiral perturbation theory (�PT)
using lattice QCD (LQCD), a non-perturbative numeri-
cal method with fully controllable systematics. We per-
form extrapolations in all parameters characterizing de-
viations from the physical point, including quark mass
and lattice spacing a, which controls e↵ects from the dis-
cretization of space and time.

Method.– Using the EFT framework, it is not nec-
essary to calculate the full nn ! ppee transition shown
in the left panel of Figure 1. Instead, we can perform
the much more computationally tractable calculation of
the on-shell ⇡�

! ⇡
+ transition in the presence of exter-

nal currents (four-quark operators). Once the LECs are
determined, calculating the true o↵-shell process can be
dealt with naturally within the EFT framework. From
a LQCD perspective, this single pion calculation is com-
putationally far simpler than the two nucleon calculation
due to absence of a signal-to-noise problem [27] and com-
plications in accounting for scattering states in a finite
volume [28, 29].

We calculate matrix elements for the following relevant
four-quark operators described in Ref. [22]:

O
++
1+ =

�
q̄L⌧

+
�
µ
qL

� ⇥
q̄R⌧

+
�µqR

⇤
,

O
++
2+ =

�
q̄R⌧

+
qL

� ⇥
q̄R⌧

+
qL

⇤
+
�
q̄L⌧

+
qR

� ⇥
q̄L⌧

+
qR

⇤
,

O
++
3+ =

�
q̄L⌧

+
�
µ
qL

� ⇥
q̄L⌧

+
�µqL

⇤

+
�
q̄R⌧

+
�
µ
qR

� ⇥
q̄R⌧

+
�µqR

⇤
, (1)

where the Takahashi bracket notation () or [] indicates
which color indices are contracted together [30]. We have
omitted parity odd operators which do not contribute to
the ⇡

�
! ⇡

+ transition, as well as the vector operators
which are suppressed by the electron mass, as discussed
in Ref. [22]. In addition, we calculate the color-mixed
operators which arise through renormalization from the

m⇡ ⇠ 310 MeV m⇡ ⇠ 220 MeV m⇡ ⇠ 130 MeV

a(fm) V m⇡L V m⇡L V m⇡L

0.15 163 ⇥ 48 3.78 243 ⇥ 48 3.99

0.12 243 ⇥ 64 3.22

0.12 243 ⇥ 64 4.54 323 ⇥ 64 4.29 483 ⇥ 64 3.91

0.12 403 ⇥ 64 5.36

0.09 323 ⇥ 96 4.50 483 ⇥ 96 4.73

TABLE I. List of HISQ ensembles used for this calculation,
showing the volumes (V = L

3 ⇥T ) studied for a given lattice
spacing and pion mass.

electroweak scale to the QCD scale [23]:

O
0++
1+ =

�
q̄L⌧

+
�
µ
qL

⇤ ⇥
q̄R⌧

+
�µqR

�
,

O
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�
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qL

�
+
�
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qR
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q̄R⌧

+
qR

�
.(2)

The analogous color-mixed operator O
0++
3+ is identical to

O
++
3+ and is therefore omitted.
To determine the matrix elements for the ⇡⇡ee op-

erators, we have performed a LQCD calculation using
the publicly available highly-improved staggered quark
(HISQ) [31] gauge field configurations generated by the
MILC collaboration [32, 33]. The set of configurations
used is shown in Table I. With this set we perform
extrapolations in the lattice spacing, pion mass, and
volume. On these configurations we chose to produce
Möbius domain wall quark propagators [34–36] due to
their improved chiral symmetry properties, which sup-
presses mixing between operators of di↵erent chirality.
To further improve the chiral properties, we first per-
formed a gradient flow method to smooth the HISQ con-
figurations [37–39], see Ref. [40] for details. This action
has been successfully used to compute the nucleon axial
coupling, gA, with 1% precision [41–43]. For each ensem-
ble we have generated quark propagators using both wall
and point sources on approximately 1000 configurations.
The calculation of the matrix elements proceeds along

the same lines as calculations of K0- [44–52], D0- [50, 53]
and B

0
(s)-meson mixing [54–57] or NN̄ oscillations [58–

60], and involves only a single light quark inversion from
an unsmeared point source at the time where the four-
quark operator insertion occurs. The propagators are
then contracted to produce a pion at an earlier time
(source) and later time (sink). Because no quark prop-
agators connect the source to the sink, we can exactly
project both source and sink onto definite momentum
(allowing only zero momentum transfer at the operator)
without the use of all-to-all propagators.
Results.– In Figure 2, we show representative plots

on the near-physical pion mass ensemble (V = 483 ⇥ 64,
a = 0.12 fm, m⇡ ⇠ 130 MeV), of the ratio

Ri(t) ⌘ C
3pt
i

(t, T � t)/ (C⇡(t)C⇡(T � t)) , (3)
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shown in the left panel of Figure 1. More recent EFT
analyses for operators relevant to 0⌫�� have indicated
that the contact operators, NNNNee, may be enhanced
in which case they would also appear at LO [26].
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FIG. 1. Left: the leading order contribution to 0⌫�� via
short-range operators occurs within a long-distance pion ex-
change diagram. The nucleons (solid lines) exchange charged
pions (dashed), which emit two electrons (lines with arrow-
heads). Right: the LECs associated with the operators in
the left panel may be calculated through a simpler ⇡� ! ⇡

+

transition. Here, the lines represent quarks.

In this Letter we determine the matrix elements of the
relevant ⇡⇡ee operators and their associated low energy
constants (LECs) for chiral perturbation theory (�PT)
using lattice QCD (LQCD), a non-perturbative numeri-
cal method with fully controllable systematics. We per-
form extrapolations in all parameters characterizing de-
viations from the physical point, including quark mass
and lattice spacing a, which controls e↵ects from the dis-
cretization of space and time.

Method.– Using the EFT framework, it is not nec-
essary to calculate the full nn ! ppee transition shown
in the left panel of Figure 1. Instead, we can perform
the much more computationally tractable calculation of
the on-shell ⇡�

! ⇡
+ transition in the presence of exter-

nal currents (four-quark operators). Once the LECs are
determined, calculating the true o↵-shell process can be
dealt with naturally within the EFT framework. From
a LQCD perspective, this single pion calculation is com-
putationally far simpler than the two nucleon calculation
due to absence of a signal-to-noise problem [27] and com-
plications in accounting for scattering states in a finite
volume [28, 29].

We calculate matrix elements for the following relevant
four-quark operators described in Ref. [22]:
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where the Takahashi bracket notation () or [] indicates
which color indices are contracted together [30]. We have
omitted parity odd operators which do not contribute to
the ⇡
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+ transition, as well as the vector operators
which are suppressed by the electron mass, as discussed
in Ref. [22]. In addition, we calculate the color-mixed
operators which arise through renormalization from the

m⇡ ⇠ 310 MeV m⇡ ⇠ 220 MeV m⇡ ⇠ 130 MeV

a(fm) V m⇡L V m⇡L V m⇡L

0.15 163 ⇥ 48 3.78 243 ⇥ 48 3.99

0.12 243 ⇥ 64 3.22

0.12 243 ⇥ 64 4.54 323 ⇥ 64 4.29 483 ⇥ 64 3.91

0.12 403 ⇥ 64 5.36
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TABLE I. List of HISQ ensembles used for this calculation,
showing the volumes (V = L

3 ⇥T ) studied for a given lattice
spacing and pion mass.
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The analogous color-mixed operator O
0++
3+ is identical to

O
++
3+ and is therefore omitted.
To determine the matrix elements for the ⇡⇡ee op-

erators, we have performed a LQCD calculation using
the publicly available highly-improved staggered quark
(HISQ) [31] gauge field configurations generated by the
MILC collaboration [32, 33]. The set of configurations
used is shown in Table I. With this set we perform
extrapolations in the lattice spacing, pion mass, and
volume. On these configurations we chose to produce
Möbius domain wall quark propagators [34–36] due to
their improved chiral symmetry properties, which sup-
presses mixing between operators of di↵erent chirality.
To further improve the chiral properties, we first per-
formed a gradient flow method to smooth the HISQ con-
figurations [37–39], see Ref. [40] for details. This action
has been successfully used to compute the nucleon axial
coupling, gA, with 1% precision [41–43]. For each ensem-
ble we have generated quark propagators using both wall
and point sources on approximately 1000 configurations.
The calculation of the matrix elements proceeds along

the same lines as calculations of K0- [44–52], D0- [50, 53]
and B

0
(s)-meson mixing [54–57] or NN̄ oscillations [58–

60], and involves only a single light quark inversion from
an unsmeared point source at the time where the four-
quark operator insertion occurs. The propagators are
then contracted to produce a pion at an earlier time
(source) and later time (sink). Because no quark prop-
agators connect the source to the sink, we can exactly
project both source and sink onto definite momentum
(allowing only zero momentum transfer at the operator)
without the use of all-to-all propagators.
Results.– In Figure 2, we show representative plots

on the near-physical pion mass ensemble (V = 483 ⇥ 64,
a = 0.12 fm, m⇡ ⇠ 130 MeV), of the ratio

Ri(t) ⌘ C
3pt
i

(t, T � t)/ (C⇡(t)C⇡(T � t)) , (3)

𝜋– 𝜋+
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Ensemble aml |N
WW
P | am⇡ af⇡ ZA �2/dof

24I
0.01 1.2224(47)⇥ 106 0.24160(45) 0.09177(25) 0.717766(57) 1.20

0.005 1.1997(54)⇥ 106 0.19131(51) 0.08495(25) 0.717161(59) 1.70

32I
0.008 3.511(18)⇥ 106 0.17277(56) 0.06802(30) 0.745357(44) 1.31

0.006 3.458(16)⇥ 106 0.15077(45) 0.06477(20) 0.745088(32) 1.20

0.004 3.398(18)⇥ 106 0.12652(39) 0.06194(27) 0.745020(40) 0.76

TABLE II. Results for the pion mass, pion decay constant, NWW
P for the pseudoscalar interpolating

operator P (x) = q(x)�5q(x) with a Coulomb gauge-fixed wall source and zero-momentum projected
wall sink (WW), the axial current renormalization factor ZA, and the correlated �2/dof for each
lattice ensemble. The errors are purely statistical and are computed using the jackknife resampling
technique.

B. Long-Distance ⇡�
! ⇡+e�e� Amplitude

Applying Wick’s theorem to the hadronic matrix element, Eq. (5), results in two classes
of diagrams and four total contractions, depicted in Figure 2. In practice, computing these

d
u

⌫

x

↵, i

t�

y

�, j

t+

(a) Neutrino block

(b) Type 1 contraction (c) Type 2 contraction

1 = Tr
h
S†
u(t� ! x)�↵ (1� �5)Sd(t� ! x)

i
· Tr

h
S†
u(t+ ! y)�� (1� �5)Sd(t+ ! y)

i
(20)

2 = Tr
h
S†
u(t+ ! x)�↵ (1� �5)Sd(t� ! x)S†

u(t� ! y)�� (1� �5)Sd(t+ ! y)
i

(21)

FIG. 2. Top: diagrammatic representation of the neutrino block construction (Eq. (22)). The
labels (↵, i) and (�, j) reflect the open spin and color indices at the source and sink, respectively.
Bottom: two classes of hadronic contractions for the ⇡�

! ⇡+e�e� decay. Crossed circles denote
insertions of the electroweak current.

contractions by brute force is prohibitively expensive due to the double summation over the

reg. at |x–y|~ O(a)
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We present an exploratory lattice QCD calculation of the neutrinoless double beta decay ⇡⇡ → ee.
Under the mechanism of light-neutrino exchange, the decay amplitude involves significant long-
distance contributions. The calculation reported here, with pion masses m⇡ = 420 and 140 MeV,
demonstrates that the decay amplitude can be computed from first principles using lattice methods.
At unphysical and physical pion masses, we obtain that amplitudes are 24% and 9% smaller than
the predication from leading order chiral perturbation theory. Our findings provide the lattice
QCD inputs and constraints for e↵ective field theory. A follow-on calculation with fully controlled
systematic errors will be possible with adequate computational resources.

Introduction. – It is a fundamental question whether
the neutrinos are Dirac or Majorana-type fermions. Neu-
trinoless double beta (0⌫2�) decay, if detected, would
prove that neutrinos are Majorana fermions. Besides,
it provides direct evidence that the fundamental law of
lepton number conservation is violated in nature. Ac-
cording to the light-neutrino exchange mechanism, the
observation of 0⌫2� decay would also give us informa-
tion about the absolute neutrino mass, which oscillation
experiments cannot predict.

Around the world many experiments are underway to
hunt for 0⌫2� decays [1–12]. Recently four experiments
reported the decay’s half-lives of T 0⌫

1�2 > 1025 yr [9–12]

and a fifth experiment reached the level of 1.07× 1026 yr
for 126Xe [5]. With a new generation of ton-scale experi-
ments, the level of sensitivity may be pushed 1 or 2 orders
of magnitude higher, yielding the possibility to identify
a few decay events per year [13–17].

The standard picture of 0⌫2� involves the long-range
light neutrino exchange – a minimal extension of the
standard model. On the other hand, current knowledge
of second-order weak-interaction nuclear matrix elements
needs to be improved, as various nuclear models lead to
discrepancies on the order of 100% [17]. A promising ap-
proach [18, 19] to improving the reliability of the 0⌫2�
predication is to constrain the few-body inputs to ab ini-
tio many-body calculations using lattice QCD [20–23].

In this work we perform the first lattice QCD calcu-
lation of the nonlocal matrix elements for the process of
⇡⇡ → ee, where the light neutrinos are included as active
degrees of freedom. We find that the decay amplitude re-
ceives dominant long-distance contributions from the e⌫̄⇡
intermediate state. Although small, the excited-state
contribution is identified with a clear signal in our cal-
culation. At both unphysical and physical pion masses,
we find that the lattice results are consistently smaller

than the predication from leading order chiral perturba-
tion theory [18].
Light-neutrino exchange in 0⌫2� decay. – We begin

with the e↵ective Lagrangian Le↵ for the single � decay

Le↵ = 2
√

2GFVud(ūL�µdL)(ēL�µ⌫eL), (1)

which represents the standard Fermi charged-current
weak interaction involving the left-handed fermionic
fields ūL, dL, ēL and ⌫eL. Here GF is the Fermi constant
and Vud is the CKM matrix element. One can introduce
the neutrino mixing matrix to connect the neutrino fla-
vor eigenstates to the mass eigenstates. For the electron
flavor, we have

ēL�µ⌫eL = �

k=1,2,3
ēL�µUek⌫kL (2)

with Uek the mixing matrix element.
The e↵ective Hamiltonian for 2� decay can be con-

structed as

He↵ =
1

2! �
d4xT [Le↵(x)Le↵(0)]

= 4G2

FV
2

ud � d4xHµ⌫(x)Lµ⌫(x), (3)

where the hadronic factor Hµ⌫(x) = T [JµL(x)J⌫L(0)]
with JµL(x) = ūL�µdL(x). Under the mechanism that
0⌫2� decays are mediated by the exchange of light Majo-
rana neutrinos, the leptonic factor can be written as [24]

Lµ⌫(x) = −m�� S0(x,0)eL(x)�µ�⌫e
c
L(0) (4)

with S0(x,0) = ∫
d4q(2⇡)4 eiqx

q2 a massless scalar propagator

and m�� = ∑k mkU
2

ek the e↵ective neutrino mass. The
charge conjugate of a fermionic field  is given as  c

=

C ̄T
= �4�2 ̄

T .
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FIG. 11. Matching between e↵ective operators in the LEFT and chiral EFT. The left-hand side denotes
representative dimension-5, -7 and -9 LNV operators in the LEFT, after integrating out heavy degrees of
freedom. Plain lines denote quarks and leptons, while dashed lines Higgs fields. When matching onto LEFT,
the Higgs fields are, in most cases, replaced by the Higgs vacuum expectation value. The diagrams on the
right-hand-side denote leading contributions to the 0⌫�� operators. Double, dashed and plain lines denote
nucleons, pions and leptons, respectively. The blue bubbles denote nucleon form factors, which subsume
pion-range contributions to the pseudoscalar form factor and to the induced pseudoscalar component of the
axial form factor. LNV interactions are denoted by a black square.

sion of �PT to the multi-nucleon sector is often called chiral EFT [155]. The power counting in
chiral EFT is significantly more complicated due to the non-perturbative nature of nuclear forces,
which often requires to modify the naive scaling of contact interactions in order to obtain results
that are explicitly independent of regulators introduced to solve the nuclear few- and many-body
problem [156, 157].

The application of �PT and chiral EFT ideas to 0⌫�� decay was pioneered in Ref. [74], which
performed the first systematic study of the hadronization of dimension-9 operators and of the con-
struction of the transition operator in �PT, and pointed out the dominance of pionic contributions
for several dimension-9 operators. In the case of specific models (R-parity-violating supersymme-
try) the importance of pion interactions was also noticed in Ref. [158]. Continuing the path of
Ref. [74], Ref. [92] consistently applied chiral EFT with Weinberg’s power counting to assess the
order at which a long-distance pion enhancement first appears in the chiral expansion of dimension-
9 operators, reproducing and extending to next-to-next lowest order the power counting results
of Ref. [74]. A derivation of the chiral EFT realization of dimension-5, -7 and -9 operators was
carried out in Refs. [76, 77, 159], with a study of the internal consistency of the transition operators
induced by long-range neutrino and pion exchanges performed in Refs. [76, 160, 161]. These works
were extended to SMEFT operators involving light sterile neutrinos in Ref. [162]. The matching
between quark-level and hadron-level operators is schematically illustrated in Fig. 11.

Dimension-5 and -7 operators typically induce LNV interactions involving light neutrinos, with

Challenges in nn→ppe–e–  
nn, pp scattering / low-lying states on present lattices 
nonlocal operator in Euclidean time:  
light intermediate states E < 2mN are exp. diverging with Euc.time

First step: 𝜋– → 𝜋+e–e–  

1 → 1 amplitude, large exc. gap 
component of EFT matching

Fig. [Detmold, Murphy 2004.07404]
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FIG. 5. The chiral (top left), continuum (top/bottom right), and infinite volume (bottom left)
extrapolations corresponding to the preferred fit (A3) in Table IV. In all but the bottom right
plot the fit has been used to shift the lattice data to the physical point (m⇡ = mPDG

⇡� , f⇡ =
fPDG
⇡ , a = 0, L = 1), excluding the quantity specified on the horizontal axis. For the continuum
extrapolation we also plot the raw data without correcting in m⇡, f⇡, and the lattice volume
(bottom right) to illustrate that most of the uncertainty in the top right figure is associated with
applying this correction. The vertical dashed line in the upper left plot corresponds to the physical
m⇡� = 139.5702(4) MeV [13]. In the continuum extrapolation (top right) a slight horizontal shift
has been applied successively to each ensemble with the same lattice spacing for clarity.

of the di↵erences in central values between fits (A3) and (B1) or (C1) is used as a
conservative estimate of this systematic.

3. Truncation of the chiral expansion: It is possible that higher-order terms in the chiral
expansion are needed to accurately describe the lattice simulations over the full range
of pion masses reported in this work4. One way to estimate the potential influence
of higher order terms is to successively prune the heaviest data from the chiral /

4 It was found in Ref. [34], for example, that next-to-next-to-leading-order corrections to the quark mass

dependence of f⇡ were needed to obtain a good fit describing a range of lattice data extending from the

physical point to the heaviest m⇡ ⇡ 430 MeV 24I ensemble.

⟨𝜋+e–e–|SNL|𝜋–⟩  with reg. photon correlator 
[Detmold, Murphy; 1811.05554;2004.07404]
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performed simultaneously using the ansatz

S⇡⇡ = 1 +
m

2

⇡

8⇡2f 2
⇡

 
3 log

✓
µ
2

m2
⇡

◆
+ 6 +

5

6
g
⇡⇡
⌫ (µ)

!

| {z }
NLO �PT

+ c
NLO

FV

e
�m⇡L

(m⇡L)
3/2

| {z }
FV

+ caa
2

|{z}
Continuum

, (27)

which includes the next-to-leading-order (NLO) pion mass dependence computed in �PT
[18], as well as models of the leading order discretization e↵ects and finite volume e↵ects.
The term linear in a

2 is motivated by the observation that the leading discretization artifacts
enter at O(a2) for domain wall fermions. The finite volume term is motivated by the leading
order asymptotic expansions of the NLO �PT finite volume corrections for f⇡ [32] and the
pion vector form factor [39], which enter as the n = 0 and n = 1 first-order hadronic matrix
elements in Eq. (8), respectively. In both cases �PT predicts

�NLO

FV /
e
�m⇡L

(m⇡L)
3/2

, (28)

up to higher order contributions suppressed by additional powers of m⇡L. In principle,
the finite volume corrections could be computed self-consistently within the framework of
�PT, but this calculation has not been performed for the ⇡

�
! ⇡

+
e
�
e
� amplitude in the

literature. We also consider a second, more general fit ansatz

S⇡⇡ = 1+
m

2

⇡

8⇡2f 2
⇡

 
3 log

✓
µ
2

m2
⇡

◆
+6+

5

6
g
⇡⇡
⌫ (µ)

!
+

 
c
NLO

FV

(m⇡L)
3/2

+
c
NNLO

FV

(m⇡L)
5/2

!
e
�m⇡L+caa

2
, (29)

which includes a model of the next-to-next-to-leading-order (NNLO) finite volume correc-
tions. This generalized ansatz is only used for the purpose of studying fit systematics
associated with the volume dependence.

Table IV summarizes a variety of fits to the ansätze Eq. (27) and Eq. (29) using di↵erent
subsets of the data, and the superjackknife resampling technique to propagate uncertainties
from independent ensembles into a global fit [40]. The uncertainties in the inverse lattice
spacings used to convert to physical units (Table I), as well as the uncertainties in the
physical mPDG

⇡� = 139.5702(4) MeV and f
PDG

⇡ = 130.4(2) MeV reported by the Particle
Data Group (PDG) [13] and used to define the physical point of the extrapolation, are
included by generating superjackknife distributions with random fluctuations drawn from
an appropriate normal distribution. The renormalization scale for the low energy constant
(LEC) g⇡⇡⌫ is fixed at the conventional value µ = 770 MeV.

Fits (A1)-(A4) are performed using the ansatz Eq. (27) and di↵erent cuts on the ensembles
included in the fit. It is observed that fit (A1) including all data has a poor �2

/dof, arising
from tension between the data with the lightest pion mass and the data with the heaviest
pion mass, but that the �2

/dof improves significantly if either of these ensembles is pruned.
While some improvement is observed in fit (A2), which prunes the ensemble with the heaviest
pion mass and largest value of m⇡L, this is still a relatively poor fit with �

2
/dof = 3.8. A

much more substantial improvement is observed in fit (A3), which instead prunes the lightest
ensemble with the smallest value of m⇡L, suggesting that residual finite volume e↵ects drive
the observed tension rather than the truncation of the chiral expansion to NLO. Thus, fit
(A3) is chosen as the preferred fit determining the central values and statistical errors of g⇡⇡⌫
and the matrix elements S⇡⇡ and M

0⌫ at the physical point, and is depicted in Figure 5.
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in anticipation of the fits to �PT discussed in the following section. Example fits to the
data for the window [Tmin/a, Tmax/a] = [13, 25] are shown in Figure 4.

Ensemble aml a2M0⌫
(0)

a2(M0⌫
�M0⌫

(0)
) a2M0⌫

S⇡⇡ �2/dof

24I
0.01 0.008422(47) 0.000664(30)(21) 0.009090(51)(14) 1.0788(37)(25) 0.59

0.005 0.007217(42) 0.000824(30)(23) 0.008049(54)(22) 1.1140(41)(32) 0.56

32I
0.008 0.004627(41) 0.000332(13)(6) 0.004961(40)(6) 1.0717(31)(14) 0.61

0.006 0.004196(26) 0.000424(17)(10) 0.004621(34)(9) 1.1012(41)(24) 0.63

0.004 0.003837(34) 0.000671(24)(10) 0.004508(46)(11) 1.1749(62)(26) 0.75

TABLE III. Results for the contribution to the 0⌫�� matrix element M0⌫ from the vacuum inter-
mediate state (M0⌫

(0)
), the correlated di↵erence M0⌫

�M0⌫
(0)

obtained from the slope of a linear fit to

the integrated four-point function ⇡!⇡ee(T ) in the limit T � 1, the full matrix element M0⌫ , and
the dimensionless matrix element S⇡⇡ = M0⌫/M0⌫

(0)
. The quoted uncertainties are statistical and

systematic, respectively, as computed by the fit averaging procedure described in the text. M0⌫
(0)

is assigned a systematic error of zero since it is computed from Eq. (42), and does not depend on
the linear fits performed in Section III B.

(a) 24I ensembles (b) 32I ensembles

FIG. 4. Lattice signals and example fits to the window [Tmin/a, Tmax/a] = [13, 25] for the integrated
four-point function, Eq. (9). The data has been processed by first normalizing the raw four-point
function, Eq. (7), using Eq. (35), and then removing the exponentionally divergent contribution
from the vacuum intermediate state using Eq. (38).

C. Chiral/Continuum Extrapolation

The final step in the calculation is to extrapolate the lattice data to the combined limits
of physical pion mass, zero lattice spacing, and infinite volume. These extrapolations are

Ek = energy of ⟨k|jL|𝜋⟩ state 
vac. Ek < m𝜋 treated separately

~ linear fit

X

�tx,yT��

C⇡�⇡+(T, tx, ty)

C⇡(T )
⇡

⇡ (T � 2�) ·M0⌫ +O

⇣
e
�(|~q|+Ek�m⇡)T � 1

|~q|+ Ek �m⇡

⌘

Chiral, FVE, continuum limit fit
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continuum / infinite volume extrapolation and examine the resulting variance in the
fit parameters. Here the di↵erences in central values between fits (A3) and (A4) are
used as an estimate of this systematic.

The main results of this work, extrapolated to the physical pion mass, continuum, and
infinite volume limits, and including all sources of statistical and systematic uncertainty
discussed in the text, are:

g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(4)fit(50)FV(9)�PT,

S⇡⇡ = 1.1054(14)stat(6)fit(61)FV(10)�PT,

M
0⌫ = 0.01880(6)stat(2)fit(10)FV(2)�PT GeV2

.

(30)

IV. DISCUSSION

The final results, including all sources of error — g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(51)sys

and S⇡⇡ = 1.1054(14)stat(62)sys — are in good agreement with an independent lattice QCD
study of the long-distance ⇡

�
! ⇡

+
e
�
e
� amplitude by Tuo, Feng, and Jin [10], which de-

termined g
⇡⇡
⌫ (m⇢) = �10.89(28)stat(74)sys and S⇡⇡ = 1.1045(34)stat(74)sys. This calculation

also used a variant of the domain wall fermion discretization for the quarks, but was per-
formed on a di↵erent set of ensembles with near-physical pion masses and coarser a ⇡ 0.2
fm lattice spacings. In addition, this calculation used a di↵erent set of techniques more
traditionally associated with lattice QCD+QED calculations to implement the Majorana
neutrino in a finite volume, and compared the QEDL [27] and infinite volume reconstruction
[28] techniques for this purpose. Since the calculation was performed at the physical pion
mass, g⇡⇡⌫ (µ) could be extracted directly by inverting

S⇡⇡ = 1 +
m

2

⇡

8⇡2f 2
⇡

✓
3 log

✓
µ
2

m2
⇡

◆
+ 6 +

5

6
g
⇡⇡
⌫ (µ)

◆
, (31)

rather than by performing a chiral fit as in Section III C of this work. The same authors
also calculated g

⇡⇡
⌫ (m⇢) = �11.96(31) from the related ⇡

�
⇡
�
! e

�
e
� decay amplitude in

Ref. [11], which is in ⇡ 4� tension with the determinations from ⇡
�
! ⇡

+
e
�
e
�. This latter

calculation does not attempt to quantify any sources of systematic error, which, presumably,
would help to explain the disagreement. Finally, in Ref. [18] Cirigliano et al. estimate
g
⇡⇡
⌫ (m⇢) ' �7.6 with an expected uncertainty of 30-50% by relating this LEC to known
LECs describing electromagnetic corrections within �PT [41, 42], which is also in reasonable
agreement with the results presented here.

One advantage of the approach taken in this work is that performing simulations at a
range of di↵erent pion masses allows for a controlled study of how well NLO �PT describes
lattice data. Since connecting first-principles lattice QCD calculations to predictions for
the matrix elements of large nuclei used in 0⌫�� searches will almost certainly involve an
analogous matching to an e↵ective field theory — allowing for an extrapolation from the
few-body systems accessible on the lattice to the many-body systems relevant to experi-
ment — this study is important to bridge from theory to phenomenology and experiment.
Furthermore, lattice calculations of nuclear systems are currently performed at significantly
heavier than physical pion masses to ameliorate the signal-to-noise problem, making it cru-
cial to understand how reliably such calculations can be matched to existing e↵ective field
theory formalisms.

8

Ensemble aml |N
WW
P | am⇡ af⇡ ZA �2/dof

24I
0.01 1.2224(47)⇥ 106 0.24160(45) 0.09177(25) 0.717766(57) 1.20

0.005 1.1997(54)⇥ 106 0.19131(51) 0.08495(25) 0.717161(59) 1.70

32I
0.008 3.511(18)⇥ 106 0.17277(56) 0.06802(30) 0.745357(44) 1.31

0.006 3.458(16)⇥ 106 0.15077(45) 0.06477(20) 0.745088(32) 1.20

0.004 3.398(18)⇥ 106 0.12652(39) 0.06194(27) 0.745020(40) 0.76

TABLE II. Results for the pion mass, pion decay constant, NWW
P for the pseudoscalar interpolating

operator P (x) = q(x)�5q(x) with a Coulomb gauge-fixed wall source and zero-momentum projected
wall sink (WW), the axial current renormalization factor ZA, and the correlated �2/dof for each
lattice ensemble. The errors are purely statistical and are computed using the jackknife resampling
technique.

B. Long-Distance ⇡�
! ⇡+e�e� Amplitude

Applying Wick’s theorem to the hadronic matrix element, Eq. (5), results in two classes
of diagrams and four total contractions, depicted in Figure 2. In practice, computing these

d
u

⌫

x

↵, i

t�

y

�, j

t+

(a) Neutrino block

(b) Type 1 contraction (c) Type 2 contraction

1 = Tr
h
S†
u(t� ! x)�↵ (1� �5)Sd(t� ! x)

i
· Tr

h
S†
u(t+ ! y)�� (1� �5)Sd(t+ ! y)

i
(20)

2 = Tr
h
S†
u(t+ ! x)�↵ (1� �5)Sd(t� ! x)S†

u(t� ! y)�� (1� �5)Sd(t+ ! y)
i

(21)

FIG. 2. Top: diagrammatic representation of the neutrino block construction (Eq. (22)). The
labels (↵, i) and (�, j) reflect the open spin and color indices at the source and sink, respectively.
Bottom: two classes of hadronic contractions for the ⇡�

! ⇡+e�e� decay. Crossed circles denote
insertions of the electroweak current.

contractions by brute force is prohibitively expensive due to the double summation over the
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in agreement with [Detmold, Murphy; 2004.07404]
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continuum / infinite volume extrapolation and examine the resulting variance in the
fit parameters. Here the di↵erences in central values between fits (A3) and (A4) are
used as an estimate of this systematic.

The main results of this work, extrapolated to the physical pion mass, continuum, and
infinite volume limits, and including all sources of statistical and systematic uncertainty
discussed in the text, are:

g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(4)fit(50)FV(9)�PT,

S⇡⇡ = 1.1054(14)stat(6)fit(61)FV(10)�PT,

M
0⌫ = 0.01880(6)stat(2)fit(10)FV(2)�PT GeV2

.

(30)

IV. DISCUSSION

The final results, including all sources of error — g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(51)sys

and S⇡⇡ = 1.1054(14)stat(62)sys — are in good agreement with an independent lattice QCD
study of the long-distance ⇡

�
! ⇡

+
e
�
e
� amplitude by Tuo, Feng, and Jin [10], which de-

termined g
⇡⇡
⌫ (m⇢) = �10.89(28)stat(74)sys and S⇡⇡ = 1.1045(34)stat(74)sys. This calculation

also used a variant of the domain wall fermion discretization for the quarks, but was per-
formed on a di↵erent set of ensembles with near-physical pion masses and coarser a ⇡ 0.2
fm lattice spacings. In addition, this calculation used a di↵erent set of techniques more
traditionally associated with lattice QCD+QED calculations to implement the Majorana
neutrino in a finite volume, and compared the QEDL [27] and infinite volume reconstruction
[28] techniques for this purpose. Since the calculation was performed at the physical pion
mass, g⇡⇡⌫ (µ) could be extracted directly by inverting

S⇡⇡ = 1 +
m

2

⇡

8⇡2f 2
⇡

✓
3 log

✓
µ
2

m2
⇡

◆
+ 6 +

5

6
g
⇡⇡
⌫ (µ)

◆
, (31)

rather than by performing a chiral fit as in Section III C of this work. The same authors
also calculated g

⇡⇡
⌫ (m⇢) = �11.96(31) from the related ⇡

�
⇡
�
! e

�
e
� decay amplitude in

Ref. [11], which is in ⇡ 4� tension with the determinations from ⇡
�
! ⇡

+
e
�
e
�. This latter

calculation does not attempt to quantify any sources of systematic error, which, presumably,
would help to explain the disagreement. Finally, in Ref. [18] Cirigliano et al. estimate
g
⇡⇡
⌫ (m⇢) ' �7.6 with an expected uncertainty of 30-50% by relating this LEC to known
LECs describing electromagnetic corrections within �PT [41, 42], which is also in reasonable
agreement with the results presented here.

One advantage of the approach taken in this work is that performing simulations at a
range of di↵erent pion masses allows for a controlled study of how well NLO �PT describes
lattice data. Since connecting first-principles lattice QCD calculations to predictions for
the matrix elements of large nuclei used in 0⌫�� searches will almost certainly involve an
analogous matching to an e↵ective field theory — allowing for an extrapolation from the
few-body systems accessible on the lattice to the many-body systems relevant to experi-
ment — this study is important to bridge from theory to phenomenology and experiment.
Furthermore, lattice calculations of nuclear systems are currently performed at significantly
heavier than physical pion masses to ameliorate the signal-to-noise problem, making it cru-
cial to understand how reliably such calculations can be matched to existing e↵ective field
theory formalisms.

�IVR(L)� �⇡IVR(L) are also exponentially suppressed and thus well under control.

III. NUMERICAL RESULTS
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Figure 4. The amplitude AIVR as a function of ts.

The IVR amplitudes AIVR as a function of ts are shown in Fig. 4 together with a fit to a

constant. All the ensembles shown in Fig. 4 visibly agree with the corresponding fit in the

window of 3 fm . ts . 4.5 fm and lead to reasonable values of �2 per degree of freedom.

The fitting results are shown in Table II.

A. Finite-volume e↵ects

For ensembles 24D (m⇡L = 3.3) and 32D (m⇡L = 4.5), the results AIVR disagree by

⇠ 10%, which is much larger than their statistical errors. We evaluate the FV corrections

�⇡,(1)IVR and �⇡,(2)IVR at ts ' 3.75 fm by adopting Eq. (32) and using the input of F⇡(q2) = 1 and

F⇡(q2) = 1+ (r2
⇡
/6)q2, respectively. As can be seen in Table II, after adding the corrections,

the large discrepancy between 24D and 32D results vanishes. For the ensembles with smallest

volume, e.g. 24D and 32D-fine, the results for AIVR + �⇡,(1)IVR and AIVR + �⇡,(2)IVR still di↵er by
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C. Results

As we only use two ensembles for continuum extrapolation, the residual lattice artifacts

might not be fully controlled by the extrapolation. To be conservative we quote the di↵erence

between the extrapolated result Acont
IVR and the 48I result A48I

IVR as the size of systematic e↵ects,

namely �a = |Acont
IVR � A48I

IVR| = 0.0055. In Fig. 6 the amplitude at the continuum limit is

obtained using AIVR + �⇡,(1)IVR . We also calculate AIVR + �⇡,(2)IVR using F⇡(q2) = 1 + (r2
⇡
/6)q2.

The O(q2) term in F⇡(q2) causes a shift �L = 0.0050 in the amplitude Acont
IVR. Such e↵ect is

included as a systematic uncertainty for the residual FV e↵ects. To sum up, the final result

for the amplitude defined in Eq. (21) is given by

A = 0.1045(34)(50)L(55)a, (33)

where the first uncertainty is statistical, the second and third ones are the systematic errors

for finite volume and lattice artifacts. Putting the amplitude into Eq. (22), we obtain the

results for low energy constant g⇡⇡
⌫
(µ) at µ = m⇢ with m⇢ the rho meson mass. The values

of g⇡⇡,(0)⌫ , g⇡⇡,(1)⌫ and g⇡⇡,(2)⌫ are obtained using AIVR, AIVR+�⇡,(1)IVR and AIVR+�⇡,(2)IVR as inputs,

respectively. These results are put in Table II. Following the similar procedure described

above, the final result for g⇡⇡
⌫

with both statistical and systematic uncertainties is given by

g⇡⇡
⌫
(µ)

���
µ=m⇢

= �10.89(28)(33)L(66)a. (34)

IV. CONCLUSION

We perform a lattice QCD calculation of the amplitude of the neutrinoless double beta

decay ⇡�
! ⇡+ee. The hadronic function H0(x), which contains the contributions from

vacuum state, are subtracted. Such subtraction removes the exponentially growing terms in

the Euclidean time integral. The remaining hadronic function H 0(x) = H(x) � H0(x) can

be used to determine the normalized amplitude A = A
M/AM

0 � 1, which can be considered

as a fractional deviation between the total decay amplitude AM and the leading-order �PT

predication A
M

0 .

In the calculation, we find large FV e↵ects in the decay amplitude. By comparing two

approaches, QEDL and IVR, we finally adopt the IVR method in our study, as the associated

FV e↵ects are exponentially suppressed and much smaller than that from QEDL. By adding
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continuum / infinite volume extrapolation and examine the resulting variance in the
fit parameters. Here the di↵erences in central values between fits (A3) and (A4) are
used as an estimate of this systematic.

The main results of this work, extrapolated to the physical pion mass, continuum, and
infinite volume limits, and including all sources of statistical and systematic uncertainty
discussed in the text, are:

g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(4)fit(50)FV(9)�PT,

S⇡⇡ = 1.1054(14)stat(6)fit(61)FV(10)�PT,

M
0⌫ = 0.01880(6)stat(2)fit(10)FV(2)�PT GeV2

.

(30)

IV. DISCUSSION

The final results, including all sources of error — g
⇡⇡
⌫ (770 MeV) = �10.78(12)stat(51)sys

and S⇡⇡ = 1.1054(14)stat(62)sys — are in good agreement with an independent lattice QCD
study of the long-distance ⇡

�
! ⇡

+
e
�
e
� amplitude by Tuo, Feng, and Jin [10], which de-

termined g
⇡⇡
⌫ (m⇢) = �10.89(28)stat(74)sys and S⇡⇡ = 1.1045(34)stat(74)sys. This calculation

also used a variant of the domain wall fermion discretization for the quarks, but was per-
formed on a di↵erent set of ensembles with near-physical pion masses and coarser a ⇡ 0.2
fm lattice spacings. In addition, this calculation used a di↵erent set of techniques more
traditionally associated with lattice QCD+QED calculations to implement the Majorana
neutrino in a finite volume, and compared the QEDL [27] and infinite volume reconstruction
[28] techniques for this purpose. Since the calculation was performed at the physical pion
mass, g⇡⇡⌫ (µ) could be extracted directly by inverting

S⇡⇡ = 1 +
m

2

⇡

8⇡2f 2
⇡

✓
3 log

✓
µ
2

m2
⇡

◆
+ 6 +

5

6
g
⇡⇡
⌫ (µ)

◆
, (31)

rather than by performing a chiral fit as in Section III C of this work. The same authors
also calculated g

⇡⇡
⌫ (m⇢) = �11.96(31) from the related ⇡

�
⇡
�
! e

�
e
� decay amplitude in

Ref. [11], which is in ⇡ 4� tension with the determinations from ⇡
�
! ⇡

+
e
�
e
�. This latter

calculation does not attempt to quantify any sources of systematic error, which, presumably,
would help to explain the disagreement. Finally, in Ref. [18] Cirigliano et al. estimate
g
⇡⇡
⌫ (m⇢) ' �7.6 with an expected uncertainty of 30-50% by relating this LEC to known
LECs describing electromagnetic corrections within �PT [41, 42], which is also in reasonable
agreement with the results presented here.

One advantage of the approach taken in this work is that performing simulations at a
range of di↵erent pion masses allows for a controlled study of how well NLO �PT describes
lattice data. Since connecting first-principles lattice QCD calculations to predictions for
the matrix elements of large nuclei used in 0⌫�� searches will almost certainly involve an
analogous matching to an e↵ective field theory — allowing for an extrapolation from the
few-body systems accessible on the lattice to the many-body systems relevant to experi-
ment — this study is important to bridge from theory to phenomenology and experiment.
Furthermore, lattice calculations of nuclear systems are currently performed at significantly
heavier than physical pion masses to ameliorate the signal-to-noise problem, making it cru-
cial to understand how reliably such calculations can be matched to existing e↵ective field
theory formalisms.

Ensemble AIVR AIVR + �
⇡,(1)
IVR AIVR + �

⇡,(2)
IVR g

⇡⇡,(0)
⌫ g

⇡⇡(1)
⌫ g

⇡⇡,(2)
⌫

24D 0.1052(9) 0.0872(9) 0.0841(10) �10.63(6) �12.14(6) �12.46(7)

32D 0.0943(6) 0.0864(6) 0.0854(6) �11.53(4) �12.19(4) �12.28(5)

32D-fine 0.1137(15) 0.0951(15) 0.0913(14) �10.04(12) �11.57(12) �11.88(12)

48I 0.1212(12) 0.1100(11) 0.1071(12) �9.27(7) �10.22(7) �10.47(8)

Table II. Results of amplitude AIVR and low energy constant g⇡⇡⌫ (µ) at µ = m⇢ for four ensembles.

The three columns AIVR, AIVR + �
⇡,(1)
IVR and AIVR + �

⇡,(2)
IVR correspond to the amplitude without FV

correction and the ones with corrections �⇡,(1)IVR and �
⇡,(2)
IVR . The values of g⇡⇡,(0)⌫ , g⇡⇡,(1)⌫ and g

⇡⇡,(2)
⌫

are obtained by putting AIVR, AIVR + �
⇡,(1)
IVR and AIVR + �

⇡,(2)
IVR into Eq. (22), respectively.

4%, suggesting that the FV e↵ects at the level of �⇡,(2)IVR � �⇡,(1)IVR shall be taken into account

in the error budget.
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Figure 5. QEDL and IVR results of amplitude A for ensembles 24D and 32D. The black circle and

square data are obtained from QEDL method with LO and partially NLO FV corrections given in

Eq. (27). The red diamond, blue triangle-up and orange triangle-left data are obtained using IVR

method, indicating the amplitude AIVR, AIVR + �
⇡,(1)
IVR and AIVR + �

⇡,(2)
IVR , respectively.

In Fig. 5 we compare the results for ensemble 24D and 32D from QEDL and IVR methods.
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3

modes (�q ≠ �0) of the propagator can be constructed as
1

Nr
∑

Nr
r=1 �r(x)�

∗
r(y) using the stochastic method, with

�r(x) =
1
√
V T

�

�q≠�0,qt
⇠r(q)e

iqx

�

q̂t
2
+∑i

�qi + ki
2
. (13)

Here the stochastic sources ⇠r(q) satisfy

lim
Nr→∞

1

Nr
�

r

⇠r(q)⇠
∗
r (q

′
) = �q,q′ . (14)

It is proposed by the NPLQCD Collaboration that the
neutrino propagator can also be computed in an exact
way by using double Fourier transformation [26].

Following Refs. [27–33] and integrating tx and ty over
a fixed window [ta, tb] with ta � t⇡⇡, we obtain

M =

tb

�

tx=ta
tb

�

ty=ta
C(tx, ty, t⇡⇡)� �V

N⇡⇡

2E⇡⇡
eE⇡⇡t⇡⇡�

= −Tlept�

n

1

V
��pn

�

i=1,2
�0�JµL�n��n�JµL�⇡⇡�

2E⌫,iEn(En +E⌫,i +Ei −E⇡⇡)

×�Tbox +
e−(En+E⌫,i+Ei−E⇡⇡)Tbox − 1

En +E⌫,i +Ei −E⇡⇡
� (15)

with Tbox = tb − ta + 1 the time extent of the
integration window. N⇡⇡ and E⇡⇡ are known

from the correlation function ��⇡�⇡(t)�
†
⇡�

†
⇡(0)�

t�0

��→

V N2
⇡⇡

2E⇡⇡
�e−E⇡⇡t + e−E⇡⇡(T−t)� + const by using the meth-

ods proposed in Ref. [34]. When Tbox is su�ciently large,
the contamination from the exponential term vanishes as
En +E⌫,i +Ei > E⇡⇡. The coe�cient of the term propor-
tional to Tbox provides a result for the decay amplitude
A(⇡⇡ → ee).

Numerical results. – We use two ensembles with
m⇡ = 420 and 140 MeV generated by the RBC and
UKQCD Collaborations [35]. The corresponding param-
eters are listed in Table I. We produce wall-source light-
quark propagators on all time slices and make use of the
time translation invariance to average the correlator over
all T time translations. (To reduce the computational
costs at m⇡ = 140 MeV, we adopt the technique of all
mode average [36, 37] with T sloppy propagators used
for correlator average and 1 precise propagator for cor-
rection.) We compute propagators for both periodic and
antiperiodic boundary conditions in the temporal direc-
tion and use their average in the calculation, which e↵ec-
tively doubles the temporal extent of the lattice.

The Feynman diagrams corresponding to the process
of ⇡⇡ → ee are shown in Fig. 1. To show the time depen-
dence of the C(tx, ty, t⇡⇡) explicitly, we define the unin-
tegrated amplitude M(t) as a function of the variable
t = tx − ty:

M(t) = C(tx, ty, t⇡⇡)� �V
N⇡⇡

2E⇡⇡
eE⇡⇡t⇡⇡� (16)

m⇡ [MeV] a−1 [GeV] L3 × T Nconf Nr

420 1.73 163 × 32 200 32
140 1.01 243 × 64 60 64

Table I. Ensembles used in this work. We list the pion mass
m⇡, the lattice spacing inverse a−1, the space-time volume
L3 × T , the number, Nconf , of configurations used and the
number, Nr, of stochastic sources for the neutrino propagator.
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Figure 1. Quark and lepton contractions for the process of
⇡⇡ → ee.

The time tx and ty are separated by at least 6 time units
from the ⇡⇡ sources (tx,y−t⇡⇡ ≥ 6) so that the �

†
⇡�

†
⇡ inter-

polating operators can project onto the ground ⇡⇡ state.
At large �t�, the time dependence ofM(t) is saturated by
the ground intermediate state - e⌫̄⇡

M(t)
�t��0

���→ −Tlept

1

V

2�0�JµL�⇡�V �⇡�JµL�⇡⇡�V
(2m⇡)(2E⌫)

e−m⇡ �t�,
(17)

where the matrix elements of �0�JµL�⇡�V and
�⇡�JµL�⇡⇡�V are determined from the correlation func-
tions �JµL(t)�

†
⇡(0)� and ��⇡(t⇡)JµL(tJ)�

†
⇡�

†
⇡(t⇡⇡)�,

respectively. The subscript ���V indicates that the
initial and final states are defined in the finite volume.
The single-pion states �⇡�V satisfy the normalization
condition �⇡(�p)�⇡(�p′)�FV = (2E⇡)V ��p,�p′ , while the
two-pion states �⇡⇡�V can be connected to the states in
the finite volume �⇡⇡�∞ through the Lellouch-Lüscher
relation [38, 39]

�⇡⇡�∞ = �2⇡E⇡⇡

k3
�

1
2

�q
d�

dq
+ k

d�

dk
�

1
2

�⇡⇡�V (18)

with the momenta k =
�

E2
⇡⇡

4
−m2

⇡ and q = kL�(2⇡).
The time dependence of M(t) is shown in Fig. 2. At

large �t� the data ofM(t) are consistent with the contri-
bution from the ground intermediate state. By subtract-
ing the ground-state contribution, the remaining excited-
state contribution is shown by blue square points in the
left panel of Fig. 2 and enlarged in the right panel. Al-
though relatively small, the contribution from the excited
intermediate states can be identified with a clear signal.
The integrated matrix element defined in Eq. (15) is

shown in Fig. 3. We realize that the size of integration
window Tbox ≈ 16 is not su�ciently large to discard the
exponential term associated with the ground intermedi-
ate state. (This can be confirmed in Fig. 2 that at �t� ≈ 15
the values of M(t) are statistically larger than 0.) Af-
ter removing this exponential term, we can fit the lattice
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Figure 2. Unintegrated amplitude M(t) defined in Eq. (16)
as a function of t = tx − ty. The black circles show the total
contribution ofM(t). The red curve is not a fit toM(t), but
a ground-state contribution predicted by Eq. (17). The blue
squares show the remaining excited-state contribution.
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Figure 3. Integrated matrix elementM as a function of Tbox.
The black circles show the integrated matrix elementM de-
fined in Eq. (15). The red squares show the results of M
with the exponential term for the ground intermediate state,
e−m⇡Tbox−1

m⇡
, subtracted.

data to a linear function of Tbox and determine the val-
ues of Alat(⇡⇡ → ee). To convert Alat(⇡⇡ → ee) to the
physical amplitude A(⇡⇡ → ee), a renormalization factor
square Z2

V �A shall be multiplied, which relates the local

lattice vector or axial-vector current (which we use) to
the conserved or partially conserved ones. Besides, the
Lellouch-Lüscher factor shall be multiplied to relate a
finite-volume amplitude to the infinite-volume one. In
our calculation, the two pions are in the ground state,
i.e. at threshold. The large-L expansion of the Lellouch-
Lüscher factor is given by

2⇡

k3
�q

d�

dq
+ k

d�

dk
� = V �1 + d1

a⇡⇡
L
+ d2 �

a⇡⇡
L
�

2

+d3 �
a⇡⇡
L
�

3

− 2⇡
a2⇡⇡r⇡⇡
L3

+O(L−4)� (19)

with a⇡⇡ the scattering length and r⇡⇡ the e↵ective
range from the k expansion of ⇡⇡ scattering phase shift

k cot �(k) = a−1⇡⇡ + r⇡⇡ k2

2
+O(k4). The coe�cients di are

given by

d1 = −2
Z00(1; 0)

⇡
= 5.674595,

d2 =
Z00(1; 0)

2
+ 3Z00(2; 0)

⇡2
= 13.075478,

d3 =
4⇡4
− 4Z00(3; 0)

⇡3
= 11.482471. (20)

The values of the zeta function Z00(s,0) have been pro-
vided by Ref. [40]. We evaluate a⇡⇡ using Lüscher’s
finite-size formula [40] and use it as an input to deter-
mine the finite-volume correction up to O(L−2).
Another type of power-law finite-volume e↵ect arises

from the long-range property of the neutrino propa-
gator. The finite-volume e↵ects relevant for the e⌫̄⇡-
intermediate state can be evaluated as

�FV =
�

�

1

V
��p
−�

d3�p

(2⇡)3
�

�

�0�JµL�⇡(�p)��⇡(�p)�JµL�⇡⇡�

E⌫E⇡(E⇡ +E⌫ +Ee −E⇡⇡)

(21)
with �p = 2⇡

L �n the discrete momentum for the pion. The
neutrino’s energy is given by E⌫ = ��p + �pe�, with �pe
the momentum carried by the electron. We define a

function f(�p) ≡ �0�JµL�⇡(�p)��⇡(�p)�JµL�⇡⇡�
E⇡(E⇡+E⌫+Ee−E⇡⇡) and split it as

f(�p) = f(−�pe)+[f(�p)−f(−�pe)]. The term inside brackets
does not contribute a power-law finite-volume e↵ect. We
thus simplify �FV as

�FV = f(−�pe)
�

�

1

V
��p
−�

d3�p

(2⇡)3
�

�

1

��pe + �p�

= f(−�pe) �−
(�ne)

2⇡L2
� . (22)

The function (�ne) with �ne = �peL�(2⇡) can be computed
numerically and we find (�ne) = 0.686(3) for m⇡ = 420
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data to a linear function of Tbox and determine the val-
ues of Alat(⇡⇡ → ee). To convert Alat(⇡⇡ → ee) to the
physical amplitude A(⇡⇡ → ee), a renormalization factor
square Z2

V �A shall be multiplied, which relates the local

lattice vector or axial-vector current (which we use) to
the conserved or partially conserved ones. Besides, the
Lellouch-Lüscher factor shall be multiplied to relate a
finite-volume amplitude to the infinite-volume one. In
our calculation, the two pions are in the ground state,
i.e. at threshold. The large-L expansion of the Lellouch-
Lüscher factor is given by

2⇡

k3
�q

d�

dq
+ k

d�

dk
� = V �1 + d1

a⇡⇡
L
+ d2 �

a⇡⇡
L
�

2

+d3 �
a⇡⇡
L
�

3

− 2⇡
a2⇡⇡r⇡⇡
L3

+O(L−4)� (19)

with a⇡⇡ the scattering length and r⇡⇡ the e↵ective
range from the k expansion of ⇡⇡ scattering phase shift

k cot �(k) = a−1⇡⇡ + r⇡⇡ k2

2
+O(k4). The coe�cients di are

given by

d1 = −2
Z00(1; 0)

⇡
= 5.674595,

d2 =
Z00(1; 0)

2
+ 3Z00(2; 0)

⇡2
= 13.075478,

d3 =
4⇡4
− 4Z00(3; 0)

⇡3
= 11.482471. (20)

The values of the zeta function Z00(s,0) have been pro-
vided by Ref. [40]. We evaluate a⇡⇡ using Lüscher’s
finite-size formula [40] and use it as an input to deter-
mine the finite-volume correction up to O(L−2).
Another type of power-law finite-volume e↵ect arises

from the long-range property of the neutrino propa-
gator. The finite-volume e↵ects relevant for the e⌫̄⇡-
intermediate state can be evaluated as
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with �p = 2⇡

L �n the discrete momentum for the pion. The
neutrino’s energy is given by E⌫ = ��p + �pe�, with �pe
the momentum carried by the electron. We define a

function f(�p) ≡ �0�JµL�⇡(�p)��⇡(�p)�JµL�⇡⇡�
E⇡(E⇡+E⌫+Ee−E⇡⇡) and split it as

f(�p) = f(−�pe)+[f(�p)−f(−�pe)]. The term inside brackets
does not contribute a power-law finite-volume e↵ect. We
thus simplify �FV as

�FV = f(−�pe)
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1
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(2⇡)3
�

�

1

��pe + �p�

= f(−�pe) �−
(�ne)
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� . (22)

The function (�ne) with �ne = �peL�(2⇡) can be computed
numerically and we find (�ne) = 0.686(3) for m⇡ = 420
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we obtain the low energy constant g⇡⇡
⌫
(µ) at µ = m⇢ = 775 MeV

g⇡⇡
⌫
(m⇢)

���
m⇡=420 MeV

= �8.50(9)stat, g⇡⇡
⌫
(m⇢)

���
m⇡=140 MeV

= �11.96(31)stat, (3)

where the uncertainties are statistical only. The two values of g⇡⇡
⌫

di↵er by ⇠ 30%. This

can be accounted by the systematic e↵ects in the lattice calculation such as finite-volume

e↵ects and lattice artifacts, as well as higher-order truncation e↵ects from �PT.

The lattice QCD calculations of ⇡�
! ⇡+ee decay have been first carried out by CalLat

Collaboration [22] for the short-distance contribution and NPLQCD Collaboration [23] for

the long-distance contribution. While the vanishing phase space does not allow the ⇡�
!

⇡+ee decay happen in nature (This problem does not exist for the K�
! ⇡+ee decay, which

is proposed by Ref. [24]), the hadronic matrix element is well defined within the Standard

Model and is equivalent to the one from ⇡�e+ ! ⇡+e� scattering, where ⇡± and e± carry

zero spatial momentum. As the crossed-channel analog to the ⇡�⇡�
! ee decay, the process

of ⇡�
! ⇡+ee can be combined together with ⇡�⇡�

! ee and serves as a cross-check for the

prediction from �PT. Since in ⇡�
! ⇡+ee decay the initial and final state only involves a

single stable hadron, the study of the finite-volume e↵ects is simplified. For example, we can

adopt a newly developed technique called infinite-volume reconstruction [1] to determine

the decay amplitude, where the finite-volume e↵ects are exponentially suppressed even a

massless neutrino propagator is included in the lattice calculation. Using four ensembles

with di↵erent volumes and lattice spacings, we obtain the decay amplitude as

A(⇡�
! ⇡+ee)

ALO

����
m⇡=140 MeV

= 1.1045(34)stat(74)sys, (4)

where the first uncertainty is statistical and the second one is an estimation for both finite-

volume e↵ects and lattice artifacts. Using the �PT formula for ⇡�
! ⇡+ee decay [18]

A(⇡�
! ⇡+ee)

ALO
= 1 +

m2
⇡

(4⇡F⇡)2

✓
3 log

µ2

m2
⇡

+ 6 +
5

6
g⇡⇡
⌫
(µ)

◆
(5)

we obtain the low energy constant

g⇡⇡
⌫
(m⇢)

���
m⇡=140 MeV

= �10.89(28)stat(74)sys. (6)

Although the functional forms of �PT formulae (2) and (5) are quite di↵erent, the results for

g⇡⇡
⌫

given in (3) and (6) are close to each other, demonstrating the success of �PT prediction.
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5

MeV and 0.517(3) for m⇡ = 140 MeV. Thus Eq. (22) in-
dicates that the finite-volume correction appears as an
O(L−2) e↵ect. We expect that the size of f(−�pe) is sig-
nificantly smaller than f(�0), as the total contribution
to the decay amplitude from the intermediate hadronic
states that carry nonzero lattice momenta only amounts
for 3%-4% when compared to the zero-momentum con-
tribution. We therefore neglect this finite-volume e↵ect
in this work, and leave it for future studies.

In Table II, we show the ground-state, excited-state
and total contributions to the decay amplitude as A(g),
A
(e) and A(g) +A(e), respectively. The results are pre-

sented in units of F 2

⇡ Tlept, where the decay constant F⇡

is determined from the matrix element �0�d̄�µ�5u�⇡(p)� =√
2pµZAF⇡, with ZA the renormalization constant. Sys-

tematic e↵ects associated with three choices of ta − t⇡⇡ =
6,7,8 are relatively smaller than the statistical errors,
suggesting that a separation of 6 is a safe choice to ne-
glect the excited ⇡⇡ states.

m⇡ [MeV] ta − t⇡⇡ A(g) A(e) A(g) +A(e)
6 0.055(13) 1.517(13)

420 7 1.462(10) 0.060(13) 1.522(13)
8 0.052(14) 1.514(14)
6 −0.0664(70) 1.8200(63)

140 7 1.8864(50) −0.0660(73) 1.8204(62)
8 −0.0665(70) 1.8199(60)

Table II. Results for ground-state (A(g)), excited-state (A(e))
and total (A(g) + A(e)) contributions to the ⇡⇡ → ee decay
amplitude. All the results are listed in units of F 2

⇡ Tlept.

Conclusion. – We have carried out a lattice QCD cal-
culation of the decay amplitude of ⇡⇡ → ee and obtained
the result with subpercent statistical errors:

A(⇡⇡ → ee)

F 2
⇡ Tlept

�

m⇡=420 MeV

= 1.517(13),

A(⇡⇡ → ee)

F 2
⇡ Tlept

�

m⇡=140 MeV

= 1.820(6). (23)

The decay amplitude of A(⇡⇡ → ee) is mainly con-
tributed by the ground intermediate state via the process
of ⇡⇡ → ⇡e⌫̄ → ee. Although the size of the excited-state
contribution is only 3%-4%, it is statistically significant
(see Fig. 2) as the uncertainty of the amplitude has been
reduced to below 1%.

Without the signal-to-noise problem, the case of ⇡⇡ →
ee serves as an ideal laboratory to develop the neces-
sary methods and tools for a calculation of 0⌫2� de-
cay with controlled uncertainties. Our exploratory study
demonstrates the possibility of a first-principles calcu-
lation of the long-distance contribution to 0⌫2� decay
via light-neutrino exchange. At m⇡ = 420 and 140
MeV, we find that the decay amplitude A(⇡⇡ → ee)
are 24% and 9% smaller than the leading-order predi-
cation ALO

(⇡⇡ → ee) = 2F 2

⇡ Tlept in chiral perturbation

theory [18]. Various systematic e↵ects such as lattice
artifacts and finite-volume e↵ects require an accurate ex-
amination in future work but are not expected to quali-
tatively alter the conclusions of this work. The 9% devia-
tion found here is still quite consistent with power count-
ing in e↵ective field theory. On the other hand, Ref. [41]
has found that a leading-order, short-range contribution
needs to be introduced in the nn → ppee decay, which
breaks down Weinberg’s power-counting scheme. It is
interesting to examine the impact of this short-range con-
tribution in our future study. The techniques presented
here can be directly applied to the study of other 0⌫2�
decays, such as n⇡ → pee and nn → ppee. From these
decays, lattice QCD can provide more low-energy QCD
inputs for the e↵ective field theory [18].
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M(T, tx, ty) =
C⇡⇡!ee(T, tx, ty)

C⇡⇡(T )

NLO ChPT

(*) 𝜋𝜈 ̅ state treated analytically
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Towards nn→ppe–e– Amplitudes

Short-range LNV 
Methodology straightforward [R.Briceño, M.Hansen'15] 
analogous to NN Parity-vioation [CalLat] 
Main computing challenge: nn, pp spectroscopy & 
scattering states on a lattice with physical quarks

|AV!1|2 /
⇣
q
@�(q)

@q
+ k

@�(k)

@k

⌘
|AV=L3 |2

𝛿(k) = scattering phase 
ϕ(q) = lattice zeta fcn. 
[Lellouch, Luscher, '01] 
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FIG. 14. One of the steps involved in lattice-QCD calculations of relevance to the 0⌫�� program is to
determine how the physical transition rates can be accessed from a lattice-QCD calculation that is performed
in a finite and Euclidean spacetime. This process must be done within each LNV scenario and may need
the EFT descriptions to be assisting the matching. Figure is taken from Ref. [199].

relation functions of the two-hadron state. This formalism, known as Lüscher’s method [176, 177],
has been extended to more general scenarios, including to three-hadron scattering amplitudes, see
Ref. [208, 209] for recent reviews. Furthermore, one-to-two hadronic transitions induced by a lo-
cal current can be determined from a corresponding lattice-QCD three-point function involving
the current and hadronic states, with successful applications in constraining matrix elements of
relevance to flavor physics [163, 210, 211]. The generalization of this formalism, known as Lellouch-
Lüscher method [212], is essential in determining the nn ! pp transition amplitude from lattice
QCD (see Refs. [213, 214] for early formalisms for two-nucleon transition amplitudes).

In particular, general model-independent formalisms for accessing one-to-two and two-to-two
hadronic transition amplitudes induced by local currents exist [215–217]. Therefore, once lattice
QCD determines the three-point functions relevant for the nn ! pp process with the higher-
dimensional local operators introduced in Sec. II D, these can be turned into the physical two-
nucleon matrix elements of interest. Similarly, if the matrix elements of relevance to the subprocess
n ! ⇡p are needed to constrain the hadronic EFTs, the path to evaluating such matrix elements is
clear. The challenge to be faced in the upcoming years is to not only accurately and precisely deter-
mine the relevant lattice-QCD matrix elements, but also to constrain two-nucleon elastic scattering
amplitudes at the quark masses at which the nn ! pp calculations are performed. This is because
the Lellouch-Lüscher-type matching conditions require information on the energy dependence of
the two-nucleon scattering amplitude near the transition energy. This puts further emphasis on
reliable and precise two-nucleon spectroscopy from lattice QCD, as described in Sec. III A.

Furthermore, for the scenario involving a light Majorana neutrino, matrix elements of two
spacetime-separated insertions of local currents are required, where hadronic and leptonic contri-
butions are convoluted via a neutrino propagator, hence complicating the matching process. In
fact, due to the long-range nature of the light-neutrino propagation between nuclear states, the
separation of short- and long-distance e↵ects necessary for arriving at a general model-independent
mapping is obscured, but the matching can be perfectly developed within a corresponding EFT.
Building upon the matching formalisms for one-to-one and simpler two-to-two bi-local matrix el-
ements [218–221], the formalism for matching to the leading-order pionless EFT for the 0⌫��
decay has been recently developed [222], hence providing the path to constraining the leading-
order unknown short-distance LEC gNN

⌫ introduced in Sec. II D. With a non-local matrix element,
another involved feature is the possibility of intermediate multi-hadron states with on-shell kine-
matics, which give rise to a di↵erent analytic structure of the four-point function in Euclidean

[Z.Davoudi, ECT* '19] 

Long-range LNV : complicated by bi-locality of nn→pp 
Can be matched to pion-less EFT  ⟹ short-range (g𝜈)NN  
[Z.Davoudi, S.V.Kadam, 2012.02083] 
On-shell intermediate states : may need addl. calculations 
to constrain (n)n→(n)p𝞶 amplitudes

Matching to EFTs beyond LO : combination of nn→pp, 𝜋+→𝜋–, n→p𝜋 LECs

2-body amplitude of local interaction:
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SUMMARY

Nucleon charges & Dark Matter scattering 
Remarkable progress sys/stat precision for single nucleons 

Nucleon/nuclear Electric Dipole Moments  
θQCD is challenging at the physical point 
Higher-dim operators: renormalization&mixing tractable 
Nuclear EDMs: CPv 𝜋N, NN coupling 

Baryon number violation operators 
Single-nucleon decay/oscillation straightforward 
Annihilation, in-medium effects challenging as 0nu2beta 

Neutrinoless double-beta decay  
Depend critically on  
• progress in NN spectrum & scattering 
• Effective many-body Theory


