Nucleon \& Nuclear Structure Inputs to Beyond-SM Searches

Sergey Syritsyn, Stony Brook University

SNOWMASS Rare Processes \& Precision Frontier
Cincinnati, OH, May 17, 2022

- Nucleon Charges \& Form Factors

Beyond-SM Contributions to neutron decays Dark Matter searches
Lepton Flavor Violation

- Nucleon/Nuclear Electric Dipole Moments
nEDM from quark EDMs
Intrinsic nucleon moments from $\theta_{Q C D}$ and quark \& gluon chromoEDMs
- Baryon number violation

Proton decay
Neutron-antineutron oscillations

- Neutrinoless double-beta decay

Short- and Long-range Lepton Number Violation
Charged Pion Transition Amplitudes
Pion Annihilation Amplitudes

Nucleon ($\bar{q} \Gamma q)$ M.E's: Neutrinos \& β-decay

$$
\begin{aligned}
\langle p+q| \bar{q} \gamma_{\mu} \gamma_{5} q|p\rangle & =\bar{u}^{\prime}\left[G_{A} \gamma_{\mu}+\tilde{G}_{P} \frac{q_{\mu}}{M}\right] \gamma_{5} u \\
\langle p+q| \bar{q} \gamma_{5} q|p\rangle & =G_{P} \bar{u}^{\prime} \gamma_{5} u \\
\langle p| \bar{q} q|p\rangle & =g_{S} \bar{u}^{\prime} u \\
\langle p| \bar{q} \sigma_{\mu \nu} q|p\rangle & =g_{T} \bar{u}^{\prime} \sigma_{\mu \nu} u
\end{aligned}
$$

- Axial form factors $G_{A}\left(Q^{2}\right)$: QE neutrino scattering
- isovector g_{A} : neutron β-decay
- $g_{s,} g_{\tau}$: sensitivity of β-decay to Beyond-SM physics
[Y.Aoki et al, FLAG'21 2111.09849]

- Ongoing controversy on excited-state contamination in single-nucleon ME: e.g. $N \pi$ states required for PCAC
- Much harder problem in light nuclei

Sergey Syritsyn (SBU)

Nucleon \& Nuclear Inputs to BSM Searches

Nucleon (َ̄Гq) M.E's: DM, LFV, CPv Sensitivity

- DM direct detection:
scalar, fermion DM EFT couplings
$\sim \mathrm{g}_{\mathrm{A}, \mathrm{S}, \mathrm{P}, \mathrm{T}},\langle\mathrm{GG}\rangle,\langle\mathrm{G} \tilde{\mathrm{G}}\rangle$
- Lepton Flavor violation
$\mu \rightarrow e$ conversion EFT couplings
$\sim G_{V, A, S, P, T}\left(Q^{2}=-\left(m_{\mu}\right)^{2}\right),\langle G G\rangle$

Example: scalar dark matter couplings
[Bishara et al 1707.06998]

$$
\begin{array}{ll}
\mathcal{Q}_{1, q}^{(6)}=\left(\varphi^{*} i \stackrel{\leftrightarrow}{\partial_{\mu}} \varphi\right)\left(\bar{q} \gamma^{\mu} q\right), & \mathcal{Q}_{2, q}^{(6)}=\left(\varphi^{*} i \stackrel{\leftrightarrow}{\partial_{\mu}} \varphi\right)\left(\bar{q} \gamma^{\mu} \gamma_{5} q\right), \\
\mathcal{Q}_{3, q}^{(6)}=m_{q}\left(\varphi^{*} \varphi\right)(\bar{q} q), & \mathcal{Q}_{4, q}^{(6)}=m_{q}\left(\varphi^{*} \varphi\right)\left(\bar{q} i \gamma_{5} q\right), \\
\mathcal{Q}_{5}^{(6)}=\frac{\alpha_{s}}{12 \pi}\left(\varphi^{*} \varphi\right) G^{a \mu \nu} G_{\mu \nu}^{a}, & \mathcal{Q}_{6}^{(6)}=\frac{\alpha_{s}}{8 \pi}\left(\varphi^{*} \varphi\right) G^{a \mu \nu} \widetilde{G}_{\mu \nu}^{a}
\end{array}
$$

- g_{T} : CP violation in nucleon EDM from quark EDM
[Y.Aoki et al, FLAG'21 2111.09849]

Sergey Syritsyn (SBU)

Nucleon \& Nuclear Inputs to BSM Searches

SNOWMASS RPF, May I7, 2022

Nuclear M.E's: Summary / Challenges

Single-nucleon matrix elements

- Quark matrix elements ($\bar{q}\ulcorner q$) : precision results available
persistent doubt about excited states
- Gluon matrix elements $\langle\mathrm{GG}\rangle,\langle\mathrm{G} \tilde{\mathrm{G}}\rangle \sim$ straightforward (albeit expensive)
- Noise(Gluon observables) > Noise (Quark observables)
- mixing with isoscalar quark densities
- Momentum dependence (form factors): straightforward
- large V_{3} for small momentum transfer $Q^{2} \leqslant 0.1 \mathrm{GeV}^{2}$

Two-nucleon and light-nuclei MEs
at the physical point: challenging

- dense spectrum of excitations
- multiple-volume dependence needed

2-body amplitude of local interaction:

$$
\begin{gathered}
\left|\mathcal{A}_{V \rightarrow \infty}\right|^{2} \propto\left(q \frac{\partial \phi(q)}{\partial q}+k \frac{\partial \delta(k)}{\partial k}\right)\left|\mathcal{A}_{V=L^{3}}\right|^{2} \\
\delta(\mathrm{k})=\text { scattering phase } \\
\phi(\mathrm{q})=\text { lattice zeta fcn. } \\
{[\text { Lellouch, Luscher, ' } 01]}
\end{gathered}
$$

P, CP(T) Violation: Nucleon/Nuclear EDM

$$
\begin{align*}
\vec{d}_{N} & =d_{N} \frac{\vec{S}}{S} \\
\mathcal{L}_{i n t} & =e A_{\mu}^{\mathrm{em}} \mathcal{V}^{\mu} \tag{P,T-even}\\
+e A_{\mu}^{\mathrm{em}} \mathcal{A}^{\mu} & (\mathrm{P}, \mathrm{~T}-\mathrm{even}) \\
& (\mathrm{P}, \mathrm{~T}-\text { odd })
\end{align*}
$$

The most sensitive probe of non-CKM CPv:

- Any signal $>10^{-5}$. (current bound) \rightarrow discovery
- $\theta_{\text {QcD-induced }}$ EDM : Strong-CP problem
- Prerequisite for Baryogenesis (non- $\theta_{\text {QCD }}$ EDM)

	$10^{-28} e \mathrm{~cm}$
CURRENT LIMIT	<300
Spallation Source @ORNL	<5
Ultracold Neutrons @LANL	~ 30
PSI EDM	<50 (I), <5 (II)
ILL PNPI	<10
Munich FRMII	<5
RCMP TRIUMF	<50 (I), <5 (II)
JPARC	<5
Standard Model (CKM)	<0.001

[B.Filippone '16]

Sources of Nucleon and Nuclei EDMs

[Yamanaka et al, EPJA53:54 (2017)]

- Effective quark-gluon CPv interactions organized by dimension
[Engel, Ramsey-Musolf, van Kolck, Prog.Part.Nucl.Phys. 71:21 (2013)]

$$
\mathcal{L}_{\text {eff }}=\sum_{i} \frac{c_{i}}{\left[\Lambda_{i(i)}\right)_{i}^{d_{i}-}} \mathcal{O}_{i}^{\left[d_{i}\right]}
$$

$d=4$: $\theta_{Q C D}$
$d=5(6)$: quark EDM, chromo-EDM
$d=6$: 4-fermion CPv, 3-gluon (Weinberg)

- Lattice QCD: CPv at hadronic scale (Nucleon EDM and $\pi \mathrm{N}$ CPv interactions) $d_{n, p}=d_{n, p}^{\theta} \theta_{\mathrm{QCD}}+d_{n, p}^{c E D M} c_{c E D M}+\ldots$

Lattice methods for computing nEDM

- Background electric field

$$
\mathcal{H}=-\vec{d}_{N} \cdot \vec{E}
$$

- CPv form factor $F_{3}\left(Q^{2} \rightarrow 0\right)$

$$
\langle p+q| J^{\mu}|p\rangle_{\varnothing P}=\bar{u}_{p^{\prime}}\left[F_{1} \gamma^{\mu}+\left(\underset{\downarrow}{F}+i F_{3} \gamma_{5}\right) \frac{\sigma^{\mu \nu} q_{\nu}}{2 m_{N}}\right] u_{p}
$$

Nucleon EDM from Quark EDMs

Quark EDM \rightarrow nucleon EDM: "tensor charge"

$$
\begin{aligned}
& \delta \mathcal{L}_{\mathrm{CPV}} \supset-\frac{i e}{2} \sum_{f=u, d, s, e} d_{f} \bar{f} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu} f \\
& d_{N}=g_{T}^{u} d_{u}+g_{T}^{d} d_{d}+g_{T}^{s} d_{s} \\
& \langle N| \bar{q} \sigma^{\mu \nu} q|N\rangle=d_{T}^{q} \bar{u} \sigma^{\mu \nu} u
\end{aligned}
$$

[Y.Aoki et al, FLAG'21 2111.09849]

Sergey Syritsyn (SBU)

Constraints on split-SUSY model
[Bhattacharya et al, PRL115:212002 (2019)]

Nucleon \& Nuclear Inputs to BSM Searches

Nucleon EDM from $\theta_{\text {Qco-Term }}$

Wilson-Clover quarks
[T.Bhattacharya et al, Lattice'21]

DW + Overlap quarks: [K.-F.Liu et al, PRELIMINARY]:

- partial- V_{4} sampling of Q
- partial quenching to explore m_{q} dependence

Wilson-Clover quarks
[J.Dragos et al,1902.03254]

Challenges:

- effect of θ_{QCD} vanishes at $m_{q} \rightarrow \underline{m}_{q^{\text {phys; }}}$ chiral symmetry important
- noise in global $\mathrm{Q}=\int \mathrm{F} \tilde{F}$ grows with V_{4}
- $\mathrm{Q}^{2} \rightarrow 0$ extrapolation(*)

Topological Charge with Gradient Flow

[M.Luscher, JHEP08:071; 1006.4518]
Gradient flow: covariant 4D-diffusion of quantum fields with "G.F." time $t_{G F}$:

$$
\frac{d}{d t_{\mathrm{GF}}} B_{\mu}\left(t_{\mathrm{GF}}\right)=D_{\mu} G_{\mu \nu}\left(t_{\mathrm{GF}}\right), \quad B_{\mu}(0)=A_{\mu}
$$

Tree-level: $\quad B_{\mu}\left(x, t_{\mathrm{GF}}\right) \propto \int d^{4} y \exp \left[-\frac{(x-y)^{2}}{4 t_{\mathrm{GF}}}\right] A_{\mu}(y)$
Gradient-flowed topological charge:

$$
\tilde{Q}\left(t_{\mathrm{GF}}\right)=\left.\int d^{4} x \frac{g^{2}}{32 \pi^{2}}\left[G_{\mu \nu} \widetilde{G}_{\mu \nu}\right]\right|_{t_{\mathrm{GF}}}
$$

- effective scale $\Lambda \mathrm{UV} \rightarrow\left(t_{\mathrm{GF}}\right)^{-1 / 2}$
\Longrightarrow renormalization prescription
- smooth fields (reduce $|G \mu \nu|$)
\Longrightarrow continuous "cooling"
- remove G $\mu \nu$ dislocations
\Longrightarrow separation of top. sectors
[M.Luscher, JHEP08:071; 1006.4518]

Topological Charge with Gradient Flow

[M.Luscher, JHEP08:071; 1006.4518]
Gradient flow: covariant 4D-diffusion of quantum fields with "G.F." time $t_{G F}$:

$$
\frac{d}{d t_{\mathrm{GF}}} B_{\mu}\left(t_{\mathrm{GF}}\right)=D_{\mu} G_{\mu \nu}\left(t_{\mathrm{GF}}\right), \quad B_{\mu}(0)=A_{\mu}
$$

Tree-level: $\quad B_{\mu}\left(x, t_{\mathrm{GF}}\right) \propto \int d^{4} y \exp \left[-\frac{(x-y)^{2}}{4 t_{\mathrm{GF}}}\right] A_{\mu}(y)$
Gradient-flowed topological charge:

$$
\tilde{Q}\left(t_{\mathrm{GF}}\right)=\left.\int d^{4} x \frac{g^{2}}{32 \pi^{2}}\left[G_{\mu \nu} \widetilde{G}_{\mu \nu}\right]\right|_{t_{\mathrm{GF}}}
$$

(e.g. dim-4 FF $\rightarrow \theta_{Q C D}-n E D M$)
quark-disconnected contractions

- novel nonperturbative scheme \Longrightarrow matching to pertrubative
- avoid power divergences

Nucleon EDM from Quark and Gluon cEDM

Challenges:

- renormalization \& mixing with lower-dim operators
- quark cEDM (dim-5): for vector current and cEDM
- Weinberg term (dim-6): gluon noise

Renormalization \& mixing with Gradient Flow:

[Mereghetti et al 2111.11449;
J.Kim et al 2106.07633]

- small tgf expansion

Wilson-Clover quarks
[T.Bhattacharya, Lattice 2021; 2203.03746]

Nucleon\&Nuclear EDMs: Summary/Challenges

Single-nucleon EDM

- $\theta_{\text {QCD-induced }} \mathrm{nEDM}$: ongoing work; some extrapolated results
potentially challenging at the physical point
- Higher-dim effective operators
quark/gluon cEDM mixing/renormalization tractable with Gradient flow
very noisy / weak "signal" -> straightforward with improved statistics
4-quark CPv just starting; potentially challenging due to quark loops
- depend on precision of $\theta_{Q C D}$-induced nEDM due to mixing

Multi-nucleon EDM and CPv NN interaction
extremely challenging, will need EFTs

Baryon Number Violation: Proton Decay

- Proton decay: $\Delta \mathrm{B}=1$ violation
- Baryon number = accidental "symmetry" of SM; violated by sphalerons
- Probe scales inaccessible to colliders: Limits on GUT, extra dim., etc
- Limits on stability of nuclear matter

ordinary GUT
- min. $S U(5)$ ruled out by $\tau\left(p \rightarrow \mathrm{e}^{+} \pi^{0}\right)$
- $S O(10)$ probed by next-gen exp.

SUSY GUT [Sakai, Yanagida '82; Weinberg '82]

- min.SUSY-SU(5) ruled out by $\tau\left(p \rightarrow \bar{\tau} \mathrm{~K}^{+}\right)$
- SUSY-SO(10) probed by next-gen exp.

- $\tau\left(p \rightarrow \mathrm{e}^{+} \pi^{0}\right) \geqslant 1.6 \cdot 10^{34}$,
$\tau\left(p \rightarrow \bar{v} \mathrm{~K}^{+}\right) \approx 5.9 \cdot 10^{33} \quad$ [Super-K]
- Expect x10 limits from Hyper-K, DUNE
- DUNE: sensitive to $p \rightarrow \bar{v} \mathrm{~K}^{+}$(SUSY GUT)

Alt. explanation of proton stability?
Multi-meson decay channels?

Proton Decay Matrix Elements

Is proton inherently stable?
Conjecture [A.Martin, G.Stavenga '12] Topological stability of "Chiral Bag" proton :

Lattice calculations with chirally-symmetric quarks:

- Prev. at $\mathrm{m} \pi \gtrsim 300 \mathrm{MeV}$ [S.Aoki et al (2000)] [Y.Aoki et al (2006), (2013), (2017)]
- Physical quarks [J.Yoo, PRD'22]
- NEXT: $\mathrm{p} \rightarrow \pi \pi, \mathrm{p} \rightarrow \pi \mathrm{K}$

Nucleon decay constants

Nucleon-to-meson amplitudes

$$
\text { (} p \rightarrow \pi \bar{\ell}, K \bar{\ell}, \text { decays })
$$

\Longrightarrow NO SUPPRESSION at physical quark masses

Baryon Number Violation : Neutron Oscillation

- $\mathrm{N} \overline{\mathrm{N}}$ oscillation: $\Delta \mathrm{B}=\mathbf{2} \boldsymbol{=} \boldsymbol{\Delta}(\mathrm{B}-\mathrm{L})$ violation
- $\tau\left({ }^{56} \mathrm{Fe}\right) \geqslant 0.72 \cdot 10^{32} \mathrm{yr}$
$\Longrightarrow \tau_{\mathrm{NN}} \gtrsim 1.4 \cdot 10^{8} \mathrm{~s}$ [Soudan]
- $\tau\left({ }^{16} O\right) \gtrsim 1.77 \cdot 10^{32} \mathrm{yr}$
$\Longrightarrow \tau_{\mathrm{NN}} \gtrsim 3.3 \cdot 10^{8} \mathrm{~s}$ [Super-K]

Soudan

Super Kamiokande

SNO

- $\tau\left({ }^{2} H\right) \geqslant 0.54 \cdot 10^{32} \mathrm{yr}$
$\Longrightarrow \tau_{\mathrm{NN}} \gtrsim 1.96 \cdot 10^{8} \mathrm{~s}$ [SNO]
- Quasi-free reactor neutrons $\tau_{\mathrm{NN}} \gtrsim 10^{8} \mathrm{~s}$ [ILL'94]

- GUT + massive Majorana lepton?
[T.K.Kuo, S.T.Love, PRL45:93 (1980)]
- partial unification and (B-L) viol.?
[R.N.Mohapatra, R.E.Marshak, PRL44:1316 (1980)]

$$
\begin{aligned}
& \delta m=-\langle\bar{n}| \int d^{4} x \mathcal{L}_{\mathrm{eff}}|n\rangle=-\sum_{i} \frac{c_{i}}{M_{X}^{5}} \begin{array}{l}
\langle\bar{n}| \mathcal{O}_{i}^{6 \mathrm{q}}|n\rangle \\
\\
\text { oscillation time } \\
\tau_{n \bar{n}}=(2 \delta m)^{-1}
\end{array} \\
& \sim(\mathrm{BSM} \text { scale })^{-5} \\
& N x-\bar{N} \text { amplitude } \\
& \\
& M x(200-300) \mathrm{TeV}
\end{aligned}
$$

Lattice QCD Result: Enhanced $\mathbf{N} \Leftrightarrow \overline{\mathbf{N}}$

Lattice QCD with physical-mass, chiral-symmetric quarks:
$x(5-10)$ larger N-Nbar oscillation vs. nucleon Bag model
[E.Rinaldi, S.S., M.Wagman, et al, PRD99:074510 (2019)]
[E.Rinaldi, S.S., M.Wagman, et al, PRL122:162(2018)]

	$\mathcal{O}^{\overline{M S}(2 \mathrm{GeV})}$	Bag "A"	$\frac{\mathrm{LQCD}}{\text { Bag " }{ }^{\text {" }}}$	Bag "B"	$\frac{\mathrm{LQCD}}{\text { Bag "B" }}$
$\left[(R R R)_{\mathbf{3}}\right]$	0	0	-	0	
$\left[(R R R)_{1}\right]$	45.4(5.6)	8.190	5.5	6.660	6.8
${ }_{[} R_{1}(L L)_{\mathbf{0}}$]	44.0(4.1)	7.230	6.1	6.090	7.2
$\left[(R R)_{\mathbf{1}} L_{\mathbf{0}}\right]$	-66.6(7.7)	-9.540	7.0	-8.160	8.1
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(1)}$	-2.12(26)	1.260	-1.7	-0.666	3.2
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(2)}$	0.531(64)	-0.314	-1.7	0.167	3.2
$\left[(R R)_{\mathbf{2}} L_{\mathbf{1}}\right]^{(3)}$	-1.06(13)	0.630	-1.7	-0.330	3.2
$\left[10^{-5} \mathrm{GeV}^{-6}\right]$$\left[10^{-5} \mathrm{GeV}^{-6}\right] \quad \begin{aligned} & {\left[10^{-5} \mathrm{GeV}^{-6}\right]} \\ & \text { MIT Bag model results from [S.Rao, R.Shrock, PLB116:238 (1982)] }\end{aligned}$					

Next steps: non-quasi-free oscillation

- full systematic UQ : finite volume, continuum limit
- "crossed" 2-neutron annihilation amplitudes 〈vac|O ${ }^{6 q}|n n\rangle$
- Nuclear medium effects

Neutrinoless Double-Beta Decay

$0 \nu 2 \beta$: Experimental window into

- Neutrino mass mechanism
- mass hierarchy
- leptogenesis (LNV \Longrightarrow BNV thru spalerons)
- scale of BSM

Experiments

- current : NEMO3, KamLAND-Zen, EXO-200, Majorana, GERDA, CUORE, CUPID
- Next-gen: x100 lifetime constraints (e.g. ton-range nEXO (1t ${ }^{136} \mathrm{Xe}$)

EFTs for $0 \nu 2 \beta$

LNV operators in SM EFT: dim-5,7,9 [Prezeau et al, '03]
dim-5, dim-7 \Longrightarrow Long-range LNV

- dim-9 \Longrightarrow Short-range, π-range LNV
- dim-5,7,9 \Longrightarrow short-range contact conteractions in Chiral EFT

Short-Range LNV in $\pi^{-} \rightarrow \pi^{+}$ee

$\left\langle\pi^{+}\right| \mathrm{O}^{4 \mathrm{q}}\left|\pi^{-}\right\rangle$[Nicholson et al, PRL'18, 1805.02634]

$$
\begin{aligned}
& \mathcal{O}_{1+}^{++}=\left(\bar{q}_{L} \tau^{+} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{R} \tau^{+} \gamma_{\mu} q_{R}\right) \\
& \mathcal{O}_{2+}^{++}=\left(\bar{q}_{L} \tau^{+} q_{R}\right)\left(\bar{q}_{R} \tau^{+} q_{L}\right)+\{L \leftrightarrow R\} \\
& \mathcal{O}_{3+}^{++}=\left(\bar{q}_{L} \tau^{+} \gamma_{\mu} q_{L}\right)\left(\bar{q}_{L} \tau^{+} \gamma_{\mu} q_{L}\right)+\{L \leftrightarrow R\}
\end{aligned}
$$

\&\& color-mixed combinations $\mathrm{O}_{1}{ }^{\prime}, \mathrm{O}_{2}{ }^{\prime}$

Short-Range LNV $\sim\left(\right.$ Mвsm $^{-1}$ comparable in See-Saw models to Long-Range LNV $\sim\left(\right.$ chirality flip) $\sim m_{\beta \beta} \sim\left(\mathrm{M}_{\mathrm{BSM}}\right)^{-1}$

Long-Range LNV on a Lattice

Dim 5

$$
\mathcal{L}_{\mathrm{eff}}=2 \sqrt{2} G_{F} V_{u d}\left(\bar{u}_{L} \gamma_{\mu} d_{L}\right)\left(\bar{e}_{L} \gamma_{\mu} \nu_{e L}\right)
$$

+ light Majorana vexchange
Challenges in $n n \rightarrow p p e^{-} e^{-}$
- nn, pp scattering / low-lying states on present lattices
- nonlocal operator in Euclidean time:
light intermediate states $E<2 m_{N}$ are exp. diverging with Euc.time

First step: $\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}$

- $1 \rightarrow 1$ amplitude, large exc. gap
- component of EFT matching

Fig. [Detmold, Murphy 2004.07404]

$$
C_{\pi^{-} \rightarrow \pi^{+} e^{-} e^{-}}\left(T, t_{x}, t_{y}\right)=\sum_{\vec{x}, \vec{y} \text { reg. at }|x-y| \sim \mathrm{O} \text { (a) }} S_{\nu}(x-y)\left\langle\pi^{+}(T) \mathcal{T}\left\{j_{L \alpha}(x) j_{L \beta}(y)\right\}\left(\pi^{-}\right)^{\dagger}\right\rangle
$$

Long-Range LNV: $\pi^{-} \rightarrow \pi^{+} e^{-} \mathrm{e}^{-}(1)$

- $\left\langle\pi^{+} e^{-} e^{-}\right| S_{N L}\left|\pi^{-}\right\rangle$with reg. photon correlator [Detmold, Murphy; 1811.05554;2004.07404]

$$
\begin{aligned}
& \sum_{\Delta \leq t_{x, y} \leq T-\Delta} \frac{C_{\pi^{-} \pi^{+}}\left(T, t_{x}, t_{y}\right)}{C_{\pi}(T)} \approx \\
& \approx(T-2 \Delta) \cdot M^{0 \nu}+O\left(\frac{e^{-\left(|\vec{q}|+E_{k}-m_{\pi}\right) T}-1}{|\vec{q}|+E_{k}-m_{\pi}}\right) \\
& \sim \text { linear fit } \quad E_{k}=\text { energy of }\langle k| j_{L}|\pi\rangle \text { state } \\
& \text { vac. } E_{k}<\mathrm{m} \pi \text { treated separately }
\end{aligned}
$$

Chiral, FVE, continuum limit fit

$$
\mathcal{S}_{\pi \pi}=\underbrace{1+\frac{m_{\pi}^{2}}{8 \pi^{2} f_{\pi}^{2}}\left(3 \log \left(\frac{\mu^{2}}{m_{\pi}^{2}}\right)+6+\frac{5}{6} g_{\nu}^{\pi \pi}(\mu)\right)}_{\mathrm{NLO} \chi \mathrm{PT}}+\underbrace{c_{F V}^{\mathrm{NLO}} \frac{e^{-m_{\pi} L}}{\left(m_{\pi} L\right)^{3 / 2}}}_{\mathrm{FV}}+\underbrace{c_{a} a^{2}}_{\text {Continuum }}
$$

$$
\begin{aligned}
g_{\nu}^{\pi \pi}(770 \mathrm{MeV}) & =-10.78(12)_{\mathrm{stat}}(4)_{\mathrm{fit}}(50)_{\mathrm{FV}}(9)_{\chi \mathrm{PT}}, \\
S_{\pi \pi} & =1.1054(14)_{\mathrm{stat}}(6)_{\mathrm{fit}}(61)_{\mathrm{FV}}(10)_{\chi \mathrm{PT}} \\
M^{0 \nu} & =0.01880(6)_{\mathrm{stat}}(2)_{\mathrm{fit}}(10)_{\mathrm{FV}}(2)_{\chi \mathrm{PT}} \quad \mathrm{GeV}^{2}
\end{aligned}
$$

Long-Range LNV: $\pi^{-} \rightarrow \pi^{+} \mathrm{e}^{-} \mathrm{e}^{-}(2)$

$\left\langle\pi^{+} e^{-} e^{-}\right| S_{N L}\left|\pi^{-}\right\rangle$with Infinite-Volume Reconstruction [Tuo, Feng, Jin, PRD, 1909.13525]

$$
\begin{aligned}
& \sum_{t, \vec{x}} S(t, \vec{x}) H(t, \vec{x}) \\
& \approx \sum_{|t|<t_{s}, \vec{x}} S(x) H(x) \\
& +2 \sum_{\vec{x}} L\left(t_{s}, \vec{x}\right) H\left(t_{s}, \vec{x}\right)
\end{aligned}
$$

long-range extrap. based on 1-state dominance

FVE, Long-range effects examined

$$
\begin{aligned}
\left.g_{\nu}^{\pi \pi}(\mu)\right|_{\mu=m_{\rho}} & =-10.89(28)(33)_{L}(66)_{a} \\
\mathcal{S}_{\pi \pi} & =1.1045(34)_{\mathrm{stat}}(74)_{\mathrm{sys}}
\end{aligned}
$$

o in agreement with [Detmold, Murphy; 2004.07404]

$$
\begin{aligned}
g_{\nu}^{\pi \pi}(770 \mathrm{MeV}) & =-10.78(12)_{\mathrm{stat}}(4)_{\mathrm{fit}}(50)_{\mathrm{FV}}(9)_{\chi \mathrm{PT}} \\
S_{\pi \pi} & =1.1054(14)_{\mathrm{stat}}(6)_{\mathrm{fit}}(61)_{\mathrm{FV}}(10)_{\chi \mathrm{PT}}
\end{aligned}
$$

Long-Range LNV: $\pi^{-} \pi^{-} \rightarrow \mathrm{e}^{-} \mathrm{e}^{-}$

- $\langle\mathrm{ee}| \mathrm{S}_{\mathrm{n}}|\pi \pi\rangle$ [Feng et al, PRL, 1809.10511]

[Detmold, Murphy; 2004.07404]

Towards $\mathrm{nn} \rightarrow \mathrm{ppe}^{-} \mathrm{e}^{-}$Amplitudes

Short-range LNV

- Methodology straightforward [R.Briceño, M.Hansen'15] analogous to NN Parity-vioation [CalLat]
- Main computing challenge: nn, pp spectroscopy \& scattering states on a lattice with physical quarks

2-body amplitude of local interaction:
$\left|\mathcal{A}_{V \rightarrow \infty}\right|^{2} \propto\left(q \frac{\partial \phi(q)}{\partial q}+k \frac{\partial \delta(k)}{\partial k}\right)\left|\mathcal{A}_{V=L^{3}}\right|^{2}$
$\delta(\mathrm{k})=$ scattering phase
$\phi(\mathrm{q})=$ lattice zeta fcn.
[Lellouch, Luscher, '01]

[Z.Davoudi, ECT* '19]
Long-range LNV : complicated by bi-locality of $\mathrm{nn} \rightarrow \mathrm{pp}$

- Can be matched to pion-less EFT \Longrightarrow short-range ($\mathrm{g} v)^{\mathrm{NN}}$ [Z.Davoudi, S.V.Kadam, 2012.02083]
- On-shell intermediate states : may need addl. calculations to constrain $(\mathrm{n}) \mathrm{n} \rightarrow(\mathrm{n}) \mathrm{p} \boldsymbol{\nu}$ amplitudes

Matching to EFTs beyond LO : combination of $n n \rightarrow p p, \pi+\rightarrow \pi-, n \rightarrow p \pi$ LECs

SUMMARY

- Nucleon charges \& Dark Matter scattering

Remarkable progress sys/stat precision for single nucleons

- Nucleon/nuclear Electric Dipole Moments
$\theta_{Q C D}$ is challenging at the physical point
Higher-dim operators: renormalization\&mixing tractable
Nuclear EDMs: CPv πN, NN coupling
- Baryon number violation operators

Single-nucleon decay/oscillation straightforward
Annihilation, in-medium effects challenging as Onu2beta

- Neutrinoless double-beta decay

Depend critically on

- progress in NN spectrum \& scattering
- Effective many-body Theory

