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Deadlines

Kendall Mahn gave a talk on Neutrino Cross Sections, NFO6 on Oct 7 —
| provided a couple of slides to advertise what we are doing.
https://snowmass21.org/neutrino/start#meetings

DUNE Snowmass papers: Draft by Dec. 15 for APB review.
Are we a DUNE White Paper? Not really. It's more of an LBNF white paper.

Neutrino Frontier Topical Group internal report draft due date Feb. 28, 2022.

Snowmass Deadline: March 15, 2022
https://snowmass21.org/submissions/start

11/18/21 T. Junk H/D Snowmass White Paper Prep 10
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Reports Timeline (NF) AL

DEEP UNDEF
NEUTRINO EX

-Extended outline due (NF): Dec 18

-Report draft due (NF): Feb 28

- Contributed papers due: March 15

NF Workshop: March 16-18

Preliminary Report due (NF): May 10
+Preliminary Report due (Snowmass): May 31
Final Report due (NF): Sept 9

-Final Report due (Snowmass): Sept 30, 2022

T. Junk H/D Snowmass White Paper Prep

A Snowmass Timeline Slide from Elizabeth Worcester with Longer Timescales
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theory/motivation



e \Why new H/D data?

We have only very imprecise data for neutrino-nucleon
interactions

Better data would impact many areas of precision measurements
iIn and beyond Standard Model, in and beyond the DUNE era

Direct measurements on H/D desirable from both theory and
experimental perspectives

e Why NUSTEC?

nucleon level interactions are the natural meeting point of
particle and nuclear

important interplay of theory and experiment to motivate,
collect, analyze, and apply new precision data

NuSTEC lives at the particle-nuclear and theory-experiment
interfaces



Cross sections for the oscillation program
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e uncertainties from elementary nucleon-level amplitudes limit absolute cross
section predictions, degenerate with nuclear modeling uncertainties

e similar situation for pion production and inelastic processes
cf. Wilkinson et al. 1411.4482, and T. Katori and J. Morfin SIS/DIS discussion
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Cross sections beyond the oscillation program
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competing measurements of hadron
structure (e.g. nucleon axial radius)
from

- neutrino scattering

- electroproduction

- muon capture

- lattice QCD

- PV electron scattering
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Radiative corrections

- radiative corrections are enhanced by large
logarithms, but these enhancements
computable in perturbation theory
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- size of corrections dependent on analysis
strategy. Important flavor ratios insensitive
to hadron and nuclear uncertainty

- hucleon-level data: update old D data; explore

and validate exclusive/inclusive analysis

strategies; complementarity with lattice QCD
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New physics searches

tonne-scale H detector can probe new models, e.g. very light
and very weakly interacting

- lepto-phobic or hadro-philic, or

- xsec/nucleon larger on free nucleon (e.g. spin/isospin
coupling, or absence of Pauli blocking, etc., or

- signal involves small nucleon recoil, or

R. Plestid talk in H/D working group and work in progress

precision nucleon-level data constrains BSM contributions to
second class currents

K. Borah (FNAL URA scholar) and O. Tomalak, work in progress
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Complementarity with lattice QCD
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- comparison of experiment and lattice gives either tests of both, or more precision

when combined, since kinematic coverage is different

- constraints on BSM contributions (absent in lattice)

- constraints on structure-dependent QED radiative corrections
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Polarization asymmetries
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plots from O. Tomalak,2008.03527

- transverse target (or recoil target, recoil lepton) asymmetries would give access to
important measurements and constraints both in and beyond Standard Model

15



Polarization asymmetries
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Polarization asymmetries
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- transverse target (or recoil target, recoil lepton) asymmetries would give access to
important measurements and constraints both in and beyond Standard Model
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Polarization asymmetries
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- transverse target (or recoil target, recoil lepton) asymmetries would give access to
important measurements and constraints both in and beyond Standard Model
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experiment

(slides from 1. Junk, U. Kentucky nuclear seminar Feb. 2021)
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Transverse Kinematics for Separating Hydrogen Interactions from
Heavier Nuclei

X.-G. Lu, D. Coplowe, R. Shah, G. Barr, D. Wark and A. Weber, PRD 92, 051302 (2015) (arXiv:
1507.00967)

X.-G. Ly, L. Pickering, S. Dolan, G. Barr, D. Coplowe, Y. Uchida, D.Wark, M.O. Wascko,
A. Weber, and T. Yuan, Phys. Rev. C94, 015503 (2016), (arXiv:1512.05748)
H. Duyang, B. Guo, S. R. Mishra and R. Petti, arXiv:1809.08752
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Option 1: Use the SAND Detector's Plastic Scintillator as a
Hydrogen Target

« SAND has a 3D scintillating tracker (3DST) — Dominantly polystyrene (CH),

* Challenges in using it to measure interactions on hydrogen:
e Can do better with the hydrogen ratio: CH vs CH,

 Need to subtract interactions on carbon
 Agreatidea—include a pure carbon target in the detector
 Deuterated plastic is very expensive. Maybe it is cheaper in bulk, but we're not optimistic.



The MINERVA Detector
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MINERvVA's Measurement of Reactions on
Different Nuclei
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Straw-Tube Tracker Design for
SAND
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Replacing the 3DST with a STT

YZ view (bean -0.101 rad along Z) XYview (B along X)



Option 2: Use a Hydrogen-Rich Gas in the High-Pressure
Gas TPC

ND-GAr is studying the use of P10 gas: 90% Ar, 10% CH, at

10 Atm.
e 97% of interactions are on Ar.
e Most of the rest are on C.

« One could add H, or D, to the gas mixture,

but it has to be a very small amount,
to keep flammability down

» Safety requirements restrict us to 40 kg of flammable
liquid or gas underground, or the entire facility would
have to be built under explosion-proof e
lectrical guidelines.

e The ND Hall has high-voltage power supplies and
benefits from flexibility in design and operation

* Other options: hydrogen-rich but less
flammable gases or liquids, e.g. Tetramethylsilane: (CH,),Si

[S.X. Wu, B.G. Leandro, M. Weber and G.Gratta, Nucl. Inst.
Meth. A 972 (2020) 163904 (arXiv:1911.12887)]



Option 3: Build a H,/D, Bubble Chamber in a
Dedicated Hall

* 40 kg limit on flammable gas/liquid doesn't let us have much.
 One option —run a 40 kg dewar of liquid hydrogen for 20 years — get 800 kg-year exposure.
-- We would still need a calorimeter and muon system.

 Not much room in the ND hall left over — detectors must move for the Prism analysis to work

e Electrons drift in a liquid hydrogen TPC, but very slowly. (Seconds... Requires incredibly low
electronegative impurity fractions)
Y. Sakai, H. Bottcher, and W. F. Schmidt, Journal of Electrostatics 12, 89-96 (1982).

 Bubble chambers are battle-tested, but they are:
 Slow
* Mechanical
* Old-style analyses required human scanners.



FNAL 15' Bubble Chamber
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Bubble Chamber Challenges and Opportunities

It has to be underground! Or at least in a 150-ft deep shaft.
Digging for neutrinos!

Rock muons — 6/m2/spill at 1.2 MW — 120/spill in 15' bubble chamber. And <1 neutrino interaction.

H, and D, are still explosive.

Magnet, flashlamps, electronic cameras and all kinds of instrumentation will be needed — explosion proof!

For personnel safety — would like no access to bubble chamber hall when there is any H, or D, in the system

e Difficult to maintain — what if something breaks and you need to fix it? Could be months to drain and re-
fill.

Large, heavy pier needed as ballast for piston.

* Boltitto the floor!

 Had originally wanted to lower it down a shaft just big enough for a bubble chamber, but that doesn't
work.

Additional detectors for calorimetry and muon ID are needed.

ldea — install it on the surface (low rate, not representative of the neutrinos produced on axis)



Polarized Target Options

Nearly impossible to polarize the protons in H, molecules just by

lowering temperature and raising B.
* Lowest-energy state @B=0 is Ortho-hydrogen (opposite nuclear spins,
symmetric spatial wavefunction).
* Need Para-hydrogen (same nuclear spins, asymmetric (L=1) spatial wave function)
 Need enormous B fields (105 T )and very low temperatures.
A. Misra and A. Panda, J Low Temp Phys (2011) 163: 311-316

Materials used in polarized targets so far:
 LiH (COMPASS)
« NH; (SMC and SpinQuest)

e Butanol (SMC and the FroST target at JLAB)

Review article: St. Goertz, W. Meyer and G. Reicherz,
Progress in Particle and Nuclear Physics 49, 403-489 (2002).
All targets for charged-particle beams so far.
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Polarized Target Challenges

Large mass needed for neutrino interactions.
Previous targets have had masses of tens to hundreds of grams.

Large magnetic field and low temperature.
SpinQuest has 5T and 1K. Easier to do in small volumes

RF is needed to transfer polarization from electrons to nuclei
We need to be able to measure how polarized the target is and monitor it over time.

We want to measure low-momentum particles from the interactions.
Tens of MeV to tens of GeV, mostly on the low side.

Particles of interest will stop inside the target — common feature of neutrino experiments.
Detector has to be inside the target.

Polarization must be switchable from + to -. Bonus: transverse polarization.

On the positive side, at least it does not have to be radiation hard! And no beam heating!




summary

e |ots of exciting physics goals: neutrinos and beyond
neutrinos, SM and BSM

e please join and contribute to white paper if you haven’t
already
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