MICE Coupling Coil Test System Cryogenics

Roger Rabehl Cryogenic Engineering and Operations Group Leader Technical Division/Test and Instrumentation Department

Cooling Method Selection

 Compared LHe usage and cooling time for 300-4.5 K cool-down time and quench recovery for bath cooling (with displacers to direct the boiloff) and conduction cooling for 5-30 g/s LHe flow rates.

Cooling Method Selection (cont'd)

Conduction cooling offers significant advantages.

	Bath cooling with directed boil-off	Conduction cooling	Conduction cooling savings factor
Cool-down			
LHe usage (k-liters)	25-43	1.25-1.95	20-22
Hours	50-100	2-8.5	11.8-25
Quench recovery			
LHe usage (k-liters)	3.2-4.6	0.35-0.58	7.9-9.1
Hours	5-13	0.5-2.5	5.2-10

Cryogenic Requirements

- Cool-down and warm-up
 - Cool-down flow rate of 20 g/s with a specified ∆T between the measured magnet hot spot and the GHe supply
 - An unlimited ΔT_{max} cool-down requires ~3 hr and 1700 liquid liters LHe
 - A 40 K ΔT_{max} cool-down requires ~13 hr and 5100 liquid liters LHe, for example
 - What ΔT_{max} is allowable during cool-down and warm-up between 300 K and 80 K?

Cryogenic Requirements (cont'd)

- Quench recovery
 - Quench recovery flow rate of 20 g/s with no Δ T restriction below 80 K.
 - Calculated uniform temperature of 87 K after a quench with all stored energy dissipated in magnet coils.
 - Quench recovery with no ΔT restriction requires ~1 hr
 - Quench recovery with ΔT_{max} based on measured magnet hot spot might be expected to require 2-3 hr

Cryogenic Requirements (cont'd)

- Cold operations
 - Estimated static heat load (radiation from MLIinsulated vacuum vessel, conduction down magnet support structure) to magnet is 20-25 W.
 - Steady flow of 5 g/s provides plenty of margin for transfer line heat loads, current lead thermal intercepts, and heat load uncertainties. It is well below 22 g/s CHL liquefaction rate with one compressor and no LN₂ pre-cooling
 - Storage dewar operates at 10 psig (4.82 K), compressor suction operates at 1 psig (4.29 K) so a stable 4.5 K (4.2 psig) can be provided.

Cryogenic Process

Cryogenic Process (cont'd)

• A similar method of controlled cool-downs of large magnets have been accomplished in Fermilab's Vertical Magnet Test Facility (VMTF)

Cryogenic System Integration

• Series of bayoneted transfer line sections will connect the cryostat to the CHL 10kl LHe dewar (final layout TBD)

Cryogenic System Integration (cont'd)

