VLENF MIND Status and Planning

R. Bayes

¹School of Physics and Astronomy University of Glasgow

January 30, 2012

R.Bayes (University of Glasgow)

January 30, 2012 1 / 11

< 同 > < ∃ >

< 17 ▶

• A new field map can be used in existing code.

Track Selection based on Existing Cuts

- Generated 1 × 10⁶ ν_{μ} and $\bar{\nu}_{\mu}$ CC events and 3 × 10⁶ ν_{μ} and $\bar{\nu}_{\mu}$ NC events in μ^+ focusing field.
- Will start by considering existing analysis for cuboid MIND in 25 GeV ν beam.

Cuts for 25 GeV NF not applicable to 2 GeV VLENF

- Levels on cuts need to be re-evaluated (probably also true for Octagonal geometry).
- Cuts will have to be scaled down or generally re-evaluated.
 - Does the cut depend on geometry?
 - Does the cut depend on momentum?

Basic Optimization

- Consists of inspecting plots of each variable.
- Adjust cuts to remove background rather than signal.

List of Cuts

Cut Name	25 GeV Cut	2 GeV Cut	Explanation
Fiducial	<i>z</i> 1 ≤ 18000 mm	<i>z</i> 1 ≤ 9000 m	20 m Detector
Max Momentum	$P_{\mu} <$ 40 GeV	$P_{\mu} <$ 3.2 GeV	ν momentum
Fitted Proportion	$N_{fit}/N_h \ge 0.6$	$N_{\it fit}/N_h \ge 0.6$	No Change
Track Quality	$\mathcal{L}_{q/p} < -0.5$	$\mathcal{L}_{q/ ho} < 0$	By Inspection
Displacement	$\frac{dispR}{dispZ} > 0.18$	$\frac{dispR}{dispZ} > 0.75$	By Inspection
	-0.0026 <i>N</i> _h ,	$-0.026N_h$,	
	<i>dispZ</i> > 6000 mm	<i>dispZ</i> > 400 mm	By Inspection
	or ${\it P}_{\mu} \leq 3$ disp Z		
Quadratic Fit	$qp_{par} < -1.0$ or	$qp_{par} < -1.0$ or	Radial Curve
	$qp_{par} > 0.0$	$qp_{par} > 0.0$	
CC Selection	$\mathcal{L}_1 > 1.0$	$\mathcal{L}_1 > 2.0$	By Inspection
Kinematic	$E_{rec} \leq 5 \text{ GeV}$ or	$E_{rec} \leq 1 \text{ GeV or}$	By Inspection
	$Q_t > 0.25,$	$Q_t > 0.025,$	
	$E_{rec} \leq 7 \text{ GeV or}$	$E_{rec} \leq 0.1 \text{ GeV or}$	
	$P_{\mu} > 0.3 E_{\it rec}$	$P_{\mu} > 0.3 E_{rec}$	

500

◆□ > ◆□ > ◆□ > ◆□ > □

Charge current selection uses the distribution of hits in trajectory in a log likelihood selection algorithm i.e. $L_1 = \log(l_{hit}^{CC}/l_{hit}^{NC})$.

- Strongly momentum dependent. Dictated by muon range.
- Mean and Variation in Energy Deposition also available.
- No improvement in signal to background ratio with other variables.

< 6 b

Current State of Analysis

- Signal/Background for ν_μ: 180
- Signal/Background for $\bar{\nu}_{\mu}$:280

- Problem is charge discrimination.
- Neutral current identification almost good enough.
- Further analysis optimization questionable.
- Reconstruction improvements are critical.

Current State of Analysis

- Signal/Background for ν_μ: 180
- Signal/Background for $\bar{\nu}_{\mu}$:280

∃ >

- Problem is charge discrimination.
- Neutral current identification almost good enough.
- Further analysis optimization questionable.
- Reconstruction improvements are critical.

Current State of Analysis

- Signal/Background for ν_μ: 180
- Signal/Background for $\bar{\nu}_{\mu}$:280

-

- Problem is charge discrimination.
- Neutral current identification almost good enough.
- Further analysis optimization questionable.
- Reconstruction improvements are critical.

Where Are Improvements Possible

Momentum Seeding for Classification and Fitting

- Charge seed based on assumption that curvature dictates position of final hit relative to first hit.
 - e.g. Last hit of track will be closer to center in focusing case.
 - Not true if muon starts on outbound trajectory or
 - muon ranges out before bending overcomes initial transverse momentum.
- Need to take initial momentum into consideration.

R.Bayes (University of Glasgow)

Where Are Improvements Possible

Hadronization

- Important for two points:
 - Identifying muons from pion decay.
 - Providing a seed for classification and fitting.
- Have spoken to Tapasi Ghosh at IFIC she is working on it.

XPositions/1000/ZPositions/1000 (Fitted && ICharge ID && Evt < 1000 && HitBreakDown.nhad > 0)

YPositions/1000:ZPositions/1000 (Fitted && ICharge.ID && Evt < 1000 && HitBreakDown.nhad > 0)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What Else Needs to be Done

Making Simulation More Realistic

- Simulation of scintillator bars.
- Harmonization with reconstruction via digitization.
- Correction to detector cross-section based on engineering.

Derivation of Limits

- Detector response needs to be translated to physics limits.
 - Must agree upon a format.
- Tools for four neutrino oscillation need to be developed/learned.
- Can available tools be used? (I haven't checked yet.)

More Practical Side

Need to produce a VLENF specific repository.

э

- Running simulations not rate limiting step.
- "Improvements" to simulation already exist and need to be formalized and benchmarked.
- Current cuts based Golden Channel analysis not sufficient to achieve required precision.

(二回) (二回) (二回)

January 30, 2012

11/11

- Multivariate analysis may be required.
- Improvements to reconstruction are certainly required
- Partitioning jobs should be possible i.e.
 - Malcolm Simulation improvements.
 - Chris Derivation of sensitivities from analysis.
 - Tapasi Hadron reconstruction.
 - Ryan track reconstruction.