ProtoDUNE-SP Neutral Pion Reconstruction

Kang Yang, University of Oxford DUNE-UK Project Meeting 2022 Jan. 17

ProtoDUNE-Single Phase

The protoDUNE single-phase apparatus is one of the two large scale prototypes of the far detector module of DUNE.

- Several goals:
 - Cryostat design validation (electronics, high voltage, LAr purity)
 - Data acquisition and storage
 - Detector performance characterisation
 - Event reconstruction and analysis

Analysis Flowchart

$\pi^+ n(^{40}Ar) \rightarrow \pi^0 p$

Previous talk

Shower Selection & Reconstruction

Shower Selection

- Shower score can be used to select shower like particles.
- Most protons and pions have shower score less than 0.5

- ✤ Rec. particles are counted as a <u>shower</u> if :
 - 1. Number of hits > 80
 - 2. Shower Score > 0.5

Why nHits > 80 (Shower Selection)

Column normalized

- The max. completeness is about 0.8.
- Best cut would be nHits > 200, but will reduce the sample size dramatically.
- We can see that the rec. showers are not completed, 20% of hits are missing.

- This is the Completeness VS nHits after select particle with shower score > 0.5
- Select nHits > 80 will reject those very low completeness rec. particle.

Shower Energy Reconstruction

Column normalized

- We have a MC-data discrepancy for energy below 0.2 GeV.
- Can apply the energy correction

- ✤ A very large rec. bias is found in shower energy (- 15%) in 0.2 – 0.7 GeV.
- Lower energy region has even larger bias.

Shower Energy Correction

- For the energy < 0.18 GeV, the fractional bias distribution cannot be fitted by a Cauchy function
- Still have very poor resolution in low energy region

Shower Energy Correction

- For the energy < 0.18 GeV, the fractional bias distribution cannot be fitted by a Cauchy function
- Still have very poor resolution in low energy region

Before/After Energy Correction

- After applying the energy correction for showers, the bias in the shower reconstruction is reduced.
- Correction function works well.

Reconstructed Neutral Pion

- The two photon invariant mass looks great after the energy correction.
- The spread in the mass distribution is quite large in signal
- Apply the kinematic fitting to further improve the shower energy or opening angles
- KF is used to improve the rec. π^0 momentum and energy

*See back-up slides (page 27) for signal definition

Analysis Flowchart

 π^+ n(⁴⁰Ar) $\rightarrow \pi^0$ p

π^0 Kinematic Fitting

TMinuit Double Minimisation

- We could use two TMinuit object to achieve the minimisation.
- We are using the "MIGRAD" algorithm.

Variables in red are varying in the process

 $\bigstar m_{\gamma\gamma}^2 = 2E_1E_2(1 - \cos(\theta))$

UNIVERSITY OF

WARWICK

$$\chi^{2} = \lambda * \{2 * E_{1}E_{2}[1 - \cos(\theta)] - m_{\gamma\gamma}^{2}\} + (\alpha - \alpha_{0})V_{\alpha_{0}}^{-1}(\alpha - \alpha_{0})$$
Update α

TMinuit *LambdaMin

 $Call$

 $SetFCN(Lambda FCN)$

 $Inside Lambda FCN$

 $Inside Lambda FCN$

 $MIGRAD$

 $\chi^{2} = \lambda * \{2 * E_{1}E_{2}[1 - \cos(\theta)] - m_{\gamma\gamma}^{2}\} + (\alpha - \alpha_{0})V_{\alpha_{0}}^{-1}(\alpha - \alpha_{0})$

 α : a vector of optimized variables α_{0} : a vector of the expected value of the measurements α_{0} : a vector of the measurements

Leading Shower Energy

The reconstructed leading shower energy is pretty good.

Fix it in the process of kinematic fitting

Kinematic Fitting Results

- After the kinematic fitting, the opening angle between two shower vectors is improved a lot.
- **\therefore** Reconstruct π^0 using leading shower E and opening angle

Kinematic Fitting Results

- After the kinematic fitting, the opening angle between two shower vectors is improved a lot.
- **\therefore** Reconstruct π^0 using leading shower E and opening angle

Reconstructed π^0 **Energy**

• The reconstructed π^0 energy looks pretty good after the fitting

The spread of the distribution is reduced and we have a sharper peak around 0.

Reconstructed π^0 **Energy**

- The reconstructed π^0 energy looks pretty good after the fitting
- The spread of the distribution is reduced and we have a sharper peak around 0.

Rec. π^0 Theta θ (Detector coordinates)

Y Projection 50 I 40 400 2564 Entries 2625 70.61 3.564 Mean 30 11.21 350 Std Dev 41 40 γ^2 / ndf Rec. – Truth (deg.) 182.1/36 0.8 20 2.826 ± 0.165 300 · 4.987 ± 0.132 6369 ± 131.0 Constan 250 0.6 200 -10 0.4 150 -20100 -30 0.2 50 -40 -50^L 180 0 -20 40 -3020 40 60 80 120 140 160 -40-10 0 10 20 30 50 Truth π^0 Theta (deg.) Rec. – Truth (deg.)

↔ The reconstructed π^0 theta θ (detector coordinates) has a ~ 3 ° bias

Need to think about how to use the improved opening angle values to corrected the π^0 momentum vector (i.e. it's direction)

Column normalized

Rec. π^0 **Phi** ϕ (Detector coordinates)

Column normalized

Y Projection

✤ The reconstructed π^0 phi ϕ (detector coordinates) has a < 1° bias

♦ Need to think about how to use the improved opening angle values to corrected the π^0 momentum vector (i.e. it's direction)

Summary and Outlook

- ✤ A MC based energy correction is applied for reconstructed shower candidates.
- * π^0 mass reconstruction was improved after selecting good shower candidates and applying the energy correction.
- The opening angle between two shower vectors was improved by the kinematic fitting
- $\mathbf{*} \pi^0$ energy reconstruction was also improved if we calculating it using E_1 and θ .
- Can correct the rec. π^0 momentum vector from the improved opening angle θ
- ✤ Plan to apply all the presented procedures for all energy beams and make inclusive pi0 measurement (π^+ + Ar → π^0 +X)

Thank you for your attention !

MC Selections Efficiency

Cuts	All	Selected	Fraction	Total Fraction		
Pion Beam Selection						
Beam PDG	358929	205219	57.2%	57.2%		
Pandora Beam Type	205219	174724	85.1%	48.7%		
Calo Size	174724	171519	98.2%	47.8%		
Beam Quality	171519	123403	71.9%	34.3%		
APA 3	123403	100303	81.3%	28.0%		
Michel Score	100303	98272	98.0%	27.4%		
Mean dEdx	98272	93871	95.5%	26.1%		
Event Topology Selection						
Protons (≥ 1)	93871	28712	30.6%	8.00%		
Showers (≥ 2)	28712	947	3.3%	0.26%		
No Pion π^+	947	770	81.3%	0.21%		
No Michel electron	770	710	92.2%	0.20%		

Data Selections Efficiency

Cuts	All	Selected	Fraction	Total Fraction		
Pion Beam Selection						
Beam PDG	1192336	164415	13.8%	13.8%		
Pandora Beam Type	164415	123906	75.4%	10.4%		
Calo Size	123906	120507	97.3%	10.1%		
Beam Quality	120507	82984	68.9%	6.96%		
APA 3	82984	63209	76.2%	5.30%		
Michel Score	63209	61606	97.5%	5.17%		
Mean dEdx	61606	57941	94.1%	4.86%		
Event Topology Selection						
Protons (≥ 1)	57941	16211	28.0%	1.36%		
Showers (≥ 2)	16211	680	4.2%	0.06%		
No Pion π^+	680	563	82.8%	0.05%		
No Michel electron	563	516	91.7%	0.04%		

Truth Signal Definition

- Phase space cuts on protons and pions:
- 1. Leading proton momentum 0.45 1 GeV/c
- 2. Sub-leading proton momentum < 0.45 GeV/c
- 3. No cuts on pions

0.45 GeV/c is the reconstruction threshold, 1 GeV/c is limit where momentum by range is reliable

- Beam type and Event topology cuts:
- 1. Incoming π^+ beam
- 2. At least one proton
- 3. At least one π^0
- 4. No π^+
- 5. No background particles (π^- and kaons, doesn't care about neutrons and nucleus)

π^0 Decay Kinematics

- Invariant mass of two photons:
 - $\bigstar m_{\gamma\gamma}^2 = 2E_1E_2(1 \cos(\theta))$
- Minimizing (Full CVM):
 - $\chi^2 = \lambda * \{2 * E_1 E_2 [1 \cos(\theta)] m_{\gamma\gamma}^2\} + (\alpha \alpha_0) V_{\alpha_0}^{-1} (\alpha \alpha_0)$

 π^0

Opening Angle: $\alpha_1 + \alpha_2 = \theta$

 $\boldsymbol{\alpha}$: [E₁, E₂, $\boldsymbol{\theta}$]

- where $\boldsymbol{\alpha} = (E_1 \quad E_2 \quad \theta)$
- ♦ $V_{\alpha_0}^{-1}$ is the inverse of the full CVM matrix
- More familiar form (diagonal only CVM)

$$\chi^2 = \lambda * \{2 * E_1 E_2 [1 - \cos(\theta)] - m_{\gamma\gamma}^2\} + \Sigma_i (\alpha_i - \alpha_{0_i})^2 / \sigma_i^2$$

✤ we set the off diagonal elements to be 0

 γ_1

 γ_2

 α_1

 α_2

Covariance Matrix

Text in the bin shows the entries

- Need to make sure the entries in each bin are similar.
- Each bin will have a set of • rec. quantities and a set of truth quantities.
- The expected value of the measurements is the mean value of the truth distribution in that bin.
- For each bin, one can calculate the CVM.

Reconstructed π^0 **Theta**

• The reconstructed π^0 theta (relative to the beam) has a 3 - 4° bias

★ Need to think about how to use the improved opening angle values to corrected the π^0 momentum vector (i.e. it's direction)

