DUNE

View from inside the Lower Volume with PD instrumented Cathode (above) and PD instrumented Membrane behind the FC

LBNC Review: FD2 - Vertical Drift PDS Progress and Stat

Operating PD on HV surface (Cathode) requires electrically floating Photo-sensors and r/o Electronics

⇒ Power (IN) and Signal (OUT) transmitted via non-conductive cables (e.g. optical Fibers)

Existing PoF and SoF (optolinks) technologies are commonly employed for voltage isolation between source/receiver and embedded electronics in high voltage or high noise environments.

However - none of the commercially available technologies are rated to operate in Cold
 (at LAr Temperature)

A highly specialized R&D has been launched (mid Mar '21)

to validate/customize COTS PoF and SoF technology for Cold applications

or

to thermally isolate from Cold environment and operate COTS technology in Warm

DUNE

LBNC April 28 2021: Vertical Drift Technical Review

2 /37

Photon Detector concept

- Leveraged HD experience (xARAPUCA)
- New design (the "tile"):

4 /22

Nov 15, 2021

- WLS plate
 600 x 600 x 3.8mm
- Active area 3380 cm²
- Estimated mass 5.5 kg
- SiPMs on flex circuits board (hybrid passive ganging) around perimeter glued or spring loaded to WLS plate
- 160 SiPMs into 2-channels (80 SiPMs/ch = 20 Passively Ganged X 4 Actively Ganged)

Flavio Cavanna

Ph Detector path

the first 60cm x 60cm xARAPUCA tile as built

LBNC Review: FD2 - Vertical Drift PDS Progress and Status

as built

Oct 13: Parts received at CERN

xARAPUCA during assembly in Clean Area (NP04)

xARAPUCA tile assembled and cabled ready for installation into cathode frame

Nov 15, 2021 Flavio Cavanna

LBNC Review: FD2 - Vertical Drift PDS Progress and Status

/22

Analog SoF concept Analog SoF path SIPM board +V22 22 UCSB V2 OutPut 2 R Fermilab V1 OutPut 1 R' C $R' = 50 \Omega$ ΔV_{12} $C' \sim 15 \, nF$ GND $R = 10 k\Omega$ the SiPM Board(s)- Passive hybrid ganging $C \sim 15 nF$ Analog CE Board InGaA Driver current: in dioc PoF DC offset + Ax2x5/R Vdd = 5V1310 nr SiPM input Receiver (differential) anode fiber to warm receiver Laser Driver ADC and cathode DAQ First Stage Second Stage Amplification Amplification 2CH APC-Pari-Fermi National Accelerator La Rev 1.0 Aug 13 2021 Fermilab the Analog CE Board Active ganging/Ampli & SoF DUNE Nov 15, 2021 Flavio Cavanna LBNC Review: FD2 - Vertical Drift PDS Progress and Status Fermilab 8 /22

Exposed Cold electronics (PoF & SoF)

Status of SoF

Presented at LIDINE Conference

Performance studies on-going: board+laser linearity, noise spectrum, small signal transmission

Power Path

Lasers Transmitter+ Fiber 🗲

Power-over-Fiber Concept

+ Low Volt/High Current Receiver (CE)

+ High Volt/Low Current Receiver (SiPMs)

Insulated Warm electronics: CryoSub concept

• Proposed June 2021 – 'crash' project

The CryoSub path

The insulation box[®]

as built

Science & Recharging Frazzier Caused Rutherford Appleton Laboratory

15 /22 Nov 15, 2021 Flavio Cavanna |

PLATE C

PLATE B

/22 Nov 15, 2021 Flavio 0

Flavio Cavanna

LBNC Review: FD2 - Vertical Drift PDS Progress and Status

1

Cold box is closed.

21 /22 Nov 15, 2021 Flavio Cavanna

Summary

- PoF and SoF technology is well suited for the electrically isolated Cathodemount PDS in FD#2 VD
- Development in 2021 provided successful validation of PoF and SoF in Cold environment
- Design of large sized xARAPUCA module (tile) and a new hybrid solution for SiPM passive ganging were also developed for the FD#2 VD PDS.
- A full scale xARAPUCA 60x60 cm² tile prototype equipped with PoF and SoF technology was built and integrated in the Cathode module by end of October as scheduled, in time for ColdBox#1
- 6 additional mini-ARAPUCA modules with exposed or insulated PoF and SoF r/o were also installed in ColdBox#1
- detected very first signals from SoF with miniARAPUCA
- xARAPUCA activation and commissioning expected to start this week

Dynamic range question:

we assume to have noise sigma of ≤ 2 ADC and S/N ~ 5

⇒ Single PE at ~10 ADC (Min signal), Max signal ~ 1000 PEs (amplitude of 1000 PE piled up in the same time bin) this corresponds to a many more PE signal, with PE's distributed over ~ 1mus as expected for Xe doped LAr signals. (note: Tests in cold with a hybrid passive ganging board showed S/N and SPE where expected, eg see slide 9).

If we adopt a 14 bit ADC (70 MSPS) should be OK to collect 1000 PE max amplitude signal before reaching saturation (16384 ADU).

Temperature setting in CryoSub Question

System operates at ~8C with ~50mW input power

Hybrid connection

Integral [ADU x Time Tick]

Max Amplitude [ADU]

20 SiPM Hybrid Ganging

V Bias (V)	Gain	SNR	ApCt (%)
44.0	86.2	3.4	16.7
44.5	110.7	4.6	21.8
45.0	135.8	6.2	34.6
45.5	157.0	6.8	49.2
46.0	186.7	8.1	71.1
46.5	207.0	9.0	112

Readout test stand development

- Test bench work done with a standard PCB passively ganging 4 rows of 5 SiPMs.
 - Test card becoming mini-ARAPUCA for Cold Box 1
 - Same 20-SiPM ganging topology employed for xARAPUCA
 - Signal injection with optical fiber at test stand

Aug 11, 2021: first demonstration of full chain in cold w/PoF! - Exposed bias PoF and insulated readout PoF

Aug 27, 2021: first demonstration of cold exposed readout PoF

Sept 9 - improved signal-to-noise

Sept. 17 - last test in cold before shipping to CERN

time [ns]

NP02 - ARAPUCA behind Field Cage

Random Triggers