## Fermilab



# Horn B&C alignment and beam on target monitoring

Žarko Pavlović

12/15/2021

#### Serantiab () Energy sig

## Requirements

- Need to keep beam systematics constrained to achieve DUNE physics goals
- Well controlled and stable beam
  - Align beamline elements within tolerances
  - Steer beam on target
- Both systems discussed here heavily rely on abundant experience with NuMI

| Quantity                         | 1-sigma Shift   | Notes                                        | In TDR |
|----------------------------------|-----------------|----------------------------------------------|--------|
| Horn A Transverse Displacement   | 0.5 mm          | X and Y shifted separately,                  | Y      |
| _                                |                 | added in quadrature                          |        |
| Horn A Transverse Tilt           | 0.5  mm         | X and Y shifted separately,                  | N      |
|                                  |                 | added in quadrature; upstream                |        |
|                                  |                 | and downstream ends shifted in               |        |
|                                  |                 | different directions                         |        |
| Horn B Transverse Displacement   | 0.5  mm         | X and Y shifted separately,                  | Y      |
|                                  |                 | added in quadrature                          |        |
| Horn B Transverse Tilt           | 0.5  mm         | X and Y shifted separately,                  | N      |
|                                  |                 | added in quadrature; upstream                |        |
|                                  |                 | and downstream ends shifted in               |        |
|                                  |                 | different directions                         |        |
| Horn C Transverse Displacement   | 0.5  mm         | X and Y shifted separately,                  | N      |
|                                  |                 | added in quadrature                          |        |
| Horn C Transverse Tilt           | 0.5  mm         | X and Y shifted separately,                  | N      |
|                                  |                 | added in quadrature; upstream                |        |
|                                  |                 | and downstream ends shifted in               |        |
|                                  |                 | different directions                         |        |
| Target Transverse Displacement   | 0.5  mm         | X and Y shifted separately,                  | N      |
|                                  |                 | added in quadrature                          |        |
| Target Transverse Tilt           | 0.5  mm         | X and Y shifted separately,                  | N      |
|                                  |                 | added in quadrature; upstream                |        |
|                                  |                 | and downstream ends shifted in               |        |
|                                  |                 | different directions                         |        |
| Horn A Longitudinal Displacement | $2 \mathrm{mm}$ |                                              | N      |
| Horn B Longitudinal Displacement | 3  mm           |                                              | N      |
| Horn C Longitudinal Displacement | 3  mm           |                                              | N      |
| Proton Beam Transverse Position  | 0.5  mm         | X and Y shifted separately;                  | Y      |
|                                  |                 | added in quadrature                          |        |
| Proton Beam Radius               | 10%             | Updated from 0.1 mm for NuMI                 | Y      |
| Proton angle on target           | $70\mu$ rad     | X and Y shifted separately;                  | Y      |
|                                  |                 | added in quadrature                          |        |
| Decay Pipe Radius                | 0.1 m           |                                              | Y      |
| Horn Currents                    | 1%              | Changed in all three horns                   | Y      |
|                                  |                 | simultaneously                               |        |
| Baffle Scraping                  | 0.25%           | To Be Updated                                | N      |
| Bafflet Scraping                 | 0.25%           | To Be Updated                                | N      |
| Target Density                   | 2%              |                                              | Y      |
| Horn Water Layer Thickness       | 0.5  mm         | Changed in all three horns<br>simultaneously | Y      |
| Upstream Target Degradation      |                 | -                                            | N      |
| # Protons on Target              | 2%              |                                              | Y      |
| Near Detector Position           |                 |                                              | N      |
| Far Detector Position            |                 |                                              | N      |
| Field in Horn Necks              |                 |                                              | N      |
| Decay Pipe Position              | 20  mm          |                                              | N      |

Table 1: Sources of alignment and focusing uncertainties in the neutrino fluxes at DUNE. Sources that were considered in physics studies in the TDR are marked with a 'Y' in the 'In TDR' column.

DUNE-DocDB-19942



## 74 Fermilab (6) ENERGY stie

## Requirements

- Need to keep beam systematics constrained to achieve DUNE physics goals
- Well controlled and stable beam
  - Align beamline elements
    within tolerances
  - Steer beam on target
- Both systems discussed here heavily rely on abundant experience with NuMI

| Quantity                         | 1-sigma Shift | Notes                          | In TDR |
|----------------------------------|---------------|--------------------------------|--------|
| Horn A Transverse Displacement   | 0.5 mm        | X and Y shifted separately,    | Y      |
|                                  |               | added in quadrature            |        |
| Horn A Transverse Tilt           | 0.5  mm       | X and Y shifted separately,    | N      |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | and downstream ends shifted in |        |
| Horn B Transverse Displacement   | 0.5 mm        | X and Y shifted separately     | Y      |
| Hom B Handverse Displacement     | 0.0           | added in quadrature            | 1      |
| Horn B Transverse Tilt           | 0.5  mm       | X and Y shifted separately.    | N      |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | and downstream ends shifted in |        |
|                                  |               | different directions           |        |
| Horn C Transverse Displacement   | 0.5  mm       | X and Y shifted separately,    | N      |
| _                                |               | added in quadrature            |        |
| Horn C Transverse Tilt           | 0.5  mm       | X and Y shifted separately,    | N      |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | and downstream ends shifted in |        |
|                                  |               | different directions           |        |
| Target Transverse Displacement   | 0.5 mm        | A and Y shifted separately,    | IN     |
| Townet There are an Tilt         | 0.5           | added in quadrature            | N      |
| larget Iransverse 111t           | 0.5 mm        | A and Y shifted separately,    | IN     |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | different directions           |        |
| Horn A Longitudinal Displacement | 2 mm          | different directions           | N      |
| Horn B Longitudinal Displacement | 3 mm          |                                | N      |
| Horn C Longitudinal Displacement | 3 mm          |                                | N      |
| Proton Beam Transverse Position  | 0.5  mm       | X and Y shifted separately;    | Y      |
|                                  |               | added in quadrature            |        |
| Froton Beam Radius               | 10%           | Opdated from 0.1 mm for NuMI   | I      |
| Proton angle on target           | $70\mu$ rad   | X and Y shifted separately;    | Y      |
|                                  |               | added in quadrature            |        |
| Decay Pipe Radius                | 0.1 m         |                                | Y      |
| Horn Currents                    | 1%            | Changed in all three horns     | Y      |
| Doffe Comping                    | 0.95%         | To Do Undeted                  | N      |
| Bafflet Seraping                 | 0.25%         | To Be Updated                  |        |
| Target Density                   | 0.25%         | To be Opdated                  |        |
| Horn Water Laver Thickness       | 0.5 mm        | Changed in all three horns     |        |
| Hom water Layer Thickness        | 0.5 mm        | simultaneously                 |        |
| Upstream Target Degradation      | ~~~           |                                | N      |
| # Protons on Target              | 2%            |                                |        |
| Near Detector Position           |               |                                |        |
| Far Detector Position            |               |                                |        |
| Field in Horn Necks              | 20            |                                |        |
| Decay Pipe Position              | 20 mm         |                                |        |

Table 1: Sources of alignment and focusing uncertainties in the neutrino fluxes at DUNE. Sources that were considered in physics studies in the TDR are marked with a 'Y' in the 'In TDR' column.

DUNE-DocDB-19942



## **Beam based alignment**

- Horn B & C aligned as part of the beam based alignment
- Scan beam across the known physical features to locate each element
- Use cross hairs at upstream and downstream ends of horns B & C
- Beam loss monitor to detect beam scatter from cross hairs

## NuMI Horn



BLM

Cross Hair



\$Fermilab 🔇

# **NuMI experience**

- Cross hair downstream end of Horn 1, and both upstream and downstream end of Horn 2
- Aluminum bars used as cross hairs 1mm wide, and 6mm or 18mm deep along the beam axis
- Low intensity beam <1e12PPP, with  $\sigma_{x,y}$ ~1mm
- Alignment within 0.5mm
- Some lessons learned
  - Horn 2 upstream cross hair (18mm) giving much bigger signal then downstream (6mm), making it hard to see signal from downstream cross hair
  - Hard to find short horizontal nubs
  - Overlapping cross hairs (due to limited space) harder to locate





## LBNF

- Engineering document describing Horn B&C cross hairs, stresses, deformations, and Finite Element Analysis
   C. Crowley DUNE-DocDB-23108
- All cross hairs 1mm wide, 18mm along beam

|                   | Horizontal offset (mm) | Vertical offset (mm) | Horizontal nub length (mm) |
|-------------------|------------------------|----------------------|----------------------------|
| Horn B upstream   | -18                    | 18                   | 13.5                       |
| Horn B downstream | 18                     | -18                  | 13.5                       |
| Horn C upstream   | -9                     | 9                    | 4.5                        |
| Horn C downstream | 9                      | 9                    | 4.5                        |







# **Beam Loss Monitors - NuMI**

- Fermilab BLMs adapted for NuMI alignment use
- Support structure
  - 2.7m long, 7cm diameter aluminum cylinder
  - Carries radiation-hard signal, HV, and ground wiring
  - Lower end has a cup to hold BLM
  - Upper end has support structure
- Can be inserted or pulled out of the beam
- Electronics setup to give 1V per 10<sup>7</sup> particles (expectation from MC was few 10<sup>7</sup> per 10<sup>12</sup> protons (90% of signal current shunted to ground)





🖩 Fermilab

## **Beam Loss Monitor placement**

- Preliminary discussions where to install the BLMs
- Ideally have BLM following each cross hair
- Limited space mid horn, and needs to be outside horn envelope
- More space downstream
- Note that it is not necessary to know precise location of BLMs, just looking for relative change in signal



🖙 Fermiab 🛽

# **Simulation studies**

- Using g4lbnf with added cross hair geometry and particle tracing mid-horn, and planes downstream of the horns B&C
- Scan beam from -20 to 20mm along x(y) axis
- Simulation predicts of the order of 10<sup>7</sup> particles/10<sup>12</sup> protons per pulse (lower for mid horn positions)
- Need to optimize location, xhair geometry to get adequate signal





# Simulation studies - radial position

- Radially more signal closer to axis, but preferably avoid bulk of the beam during normal running (if monitors stay inserted)
- 95% of pions contained within the r<33cm after horn B, and r<43cm after horn C</li>





# Simulation studies - radial position

- Radially more signal closer to axis, but preferably avoid bulk of the beam during normal running (if monitors stay inserted)
- 95% of pions contained within the r<33cm after horn B, and r<43cm after horn C</li>
- Signal falling off roughly as 1/r<sup>2</sup>
- Signal over background remains fairly flat





# Simulation studies - longitudinal position

- Peak signal vs the downstream plane position relatively flat
- Only concern far off-axis if BLM less than 1m downstream of the cross hair





## **Simulation studies**

- Current design using Beryllium for horn B upstream cross hair
- From simulation expect ~20% lower signal



- Signal proportional to cross hair thickness (along beamline)
  - 27 vs 18mm cross hairs -15-20% increase in signal



## 74 Fermilab (6) Energy sie

## Requirements

- Need to keep beam systematics constrained to achieve DUNE physics goals
- Well controlled and stable beam
  - Align beamline elements within tolerances
  - Steer beam on target

| Quantity                         | 1-sigma Shift | Notes                          | In TDR |
|----------------------------------|---------------|--------------------------------|--------|
| Horn A Transverse Displacement   | 0.5 mm        | X and Y shifted separately,    | Y      |
|                                  |               | added in quadrature            |        |
| Horn A Transverse Tilt           | 0.5  mm       | X and Y shifted separately,    | N      |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | and downstream ends shifted in |        |
| Horn B Transverse Displacement   | 0.5 mm        | X and Y shifted separately.    | Y      |
|                                  |               | added in quadrature            | _      |
| Horn B Transverse Tilt           | 0.5  mm       | X and Y shifted separately,    | N      |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | and downstream ends shifted in |        |
|                                  |               | different directions           |        |
| Horn C Transverse Displacement   | 0.5  mm       | X and Y shifted separately,    | N      |
|                                  | 0.5           | added in quadrature            | N      |
| Horn C Transverse Tilt           | 0.5 mm        | A and Y shifted separately,    | IN     |
|                                  |               | added in quadrature, upstream  |        |
|                                  |               | different directions           |        |
| Target Transverse Displacement   | 0.5 mm        | X and Y shifted separately,    | IN     |
| с                                |               | added in quadrature            |        |
| Target Transverse Tilt           | 0.5  mm       | X and Y shifted separately,    | N      |
|                                  |               | added in quadrature; upstream  |        |
|                                  |               | and downstream ends shifted in |        |
|                                  | 0             | different directions           | N. 1   |
| Horn A Longitudinal Displacement | 2 mm          |                                |        |
| Horn C Longitudinal Displacement | 3 mm          |                                | N      |
| Proton Beam Transverse Position  | 0.5 mm        | X and Y shifted separately:    | Y      |
|                                  | 010 1111      | added in quadrature            | -      |
| Proton Beam Radius               | 10%           | Opdated from 0.1 mm for NulVII | 1      |
| Proton angle on target           | $70\mu$ rad   | X and Y shifted separately;    | Y      |
|                                  |               | added in quadrature            |        |
| Decay Pipe Radius                | 0.1 m         |                                | Y      |
| Horn Currents                    | 1%            | Changed in all three horns     | Y      |
| Baffle Scraping                  | 0.25%         | To Be Undeted                  | N      |
| Bafflet Scraping                 | 0.25%         | To Be Updated                  | N      |
| Target Density                   | 2%            | To De optition                 | Y      |
| Horn Water Layer Thickness       | 0.5 mm        | Changed in all three horns     | Y      |
|                                  |               | simultaneously                 |        |
| Upstream Target Degradation      |               | -                              | N      |
| # Protons on Target              | 2%            |                                | Y      |
| Near Detector Position           |               |                                | N      |
| Far Detector Position            |               |                                | N      |
| Field in Horn Necks              |               |                                |        |
| Decay Pipe Position              | 20 mm         |                                | N      |

Table 1: Sources of alignment and focusing uncertainties in the neutrino fluxes at DUNE. Sources that were considered in physics studies in the TDR are marked with a 'Y' in the 'In TDR' column.

DUNE-DocDB-19942



## **Beam position on target**

- Use beam position monitors to steer beam on target
- Beam based alignment finds the target and all other elements within BPM coordinates
  - Dedicated study time (occasional beginning/end of run)
  - Low intensity/single batch, 1mm RMS beam size
- Need to control for:
  - BPM intensity dependence
  - Calibration drift (geometric vs electrical center)



# **Target Position Thermometer (Hylen device)**

- Simple and robust device to measure beam on target
  - Measurements with full intensity
  - NuMI experience resolution and stability below 0.1mm
- Complementary to BPMs
  - Slow device, not pulse by pulse measurement







## rmilab (@) Ener

# LBNF TPT

- Reoptimize system for LBNF operating parameters
  - 1.2MW beam 7.5x10<sup>13</sup>PPP
  - 2.7mm RMS beam size
  - Use 5 bars to accommodate wider beam
- Studies under way
- RAL provides engineering and integration with target



