
Pierre Lasorak 01/12/2021

Config thoughts
• Building on Phil’s idea, we could separate each of Module, App, System become their own python module, one file per “entity” 

• Module: Some task 

• App: Some collections of tasks that run on the same host 

• System: Many apps on different hosts 

• Also separate out utilities: Connection, JsonExporter, CommandMaker  

• In minidaqapp, we effectively have Apps in different files that have the function generate(…) 

• Could make this link explicit, and create a “Trigger” App class directly? 

• For example:

1

trigger_app.py

mdapp_multiru_gen.py



Pierre Lasorak 01/12/2021

Config thoughts
• Most of the files present in minidaqapp could become an App subclass 

• Maybe these should go in their original repo, for example trigger_gen.py in the triggers repo 
(i.e. maintenance is delegated to the people who wrote the C++ code), and minidaqapp 
would just plug all the Apps together…? 

• I find it weird that minidaqapp has to change every time a new feature is included. 

• Some Apps need to know the full state of the system to create connections to them, for 
example the MLT: 

• Could implement a System.finalise(), that goes into every app, module and execute user 
code. 

• In the case of the trigger, Trigger.finalise(system) could be setting all the MLT connections 
etc… 

• Some of this should disappear after network manager, I haven’t looked at it

2



Pierre Lasorak 01/12/2021

Config thoughts
• Discussion this morning with Alex… 

• Layered configuration generation: 

• 1st step: local configuration (1 APA) → App class (right now generate functions) 

• 2nd step: “glue” them together, global configuration (150 APAs) → System class (right now in mdapp_multiru_gen.py) 

• 3rd step: assign host and end point (75 readout hosts) → K8s? (right now in mdapp_multiru_gen.py) 

• The main idea is that you can only go downwards, but you can reuse earlier stages in different way 

• Some complications 

• Difference between local and global is not so trivial 

• Where should command generation happen? 

• What do the intermediate configuration look like and how do we pass them 
around? 

• There should be a fair bit of placeholders for hosts, network endpoints… 

• First pass idea: 

• 1st step: save the arguments of the App.ctor (outside minidaqapp) 

• 2nd step: create an even bigger json which specifies the whole system 
(in minidaqapp), for that, maybe we can use networkx saving facility? 

• 3rd step: replace host and endpoint placeholders with reality (in minidaqapp)

3

mdapp_multiru_gen.py


