NEUTRINO EXPERIMENT

Imperial College Config thoughts LAXVE

* Building on Phil’'s idea, we could separate each of Module, App, System become their own python module, one file per “entity”

* Module: Some task

« App: Some collections of tasks that run on the same host

o System: Many apps on different hosts

* Also separate out utilities: Connection, JsonExporter, CommandMaker

* In minidagapp, we effectively have Apps in different files that have the function generate(...)

e Could make this link explicit, and create a “Trigger” App class directly?

* For example: mdapp_mu\’[il’U_geﬂ.py

| | ger a
the_system.apps["trigger"] = Trigger(
NUMBER_OF_RAWDATA_PRODUCERS = total_number_of_data_producers,
NUMBER_OF_TPSET_PRODUCERS = total_number_of_data_producers enable_software_tpg Q,
ACTIVITY_PLUGIN = trigger_activity_plugin,
ACTIVITY_CONFIG = (trigger_activity_config),
CANDIDATE_PLUGIN = trigger_candidate_plugin,
CANDIDATE_CONFIG = (trigger_candidate_config),
TOKEN_COUNT = trigemu_token_count,
. SYSTEM_TYPE = system_type,
iri gger_app.py TTCM_S1=ttcm_sd,
- TTCM_S2=ttcm_s2,
TRIGGER_WINDOW_BEFORE_TICKS = trigger_window_before_ticks,
TRIGGER_WINDOW_AFTER_TICKS = trigger_window_after_ticks,
HOST=host_trigger)

class Trigger(App):
def __init__ (# NETWORK_ENDPOINTS: list,
NUMBER_OF_RAWDATA_PRODUCERS: int = 2,
NUMBER_OF_TPSET_PRODUCERS: int = 2,

ACTIVITY_PLUGIN: str = 'TriggerActivityMakerPrescalePlugin',
ACTIVITY_CONFIG: dict = dict(prescale=10000),

console.log("Trigger module graph:", the_system.apps['trigger'])
Pierre Lasorak 1 01/12/2021

NEUTRINO EXPERIMENT

mperial College Config thoughts LAXVE

* Most of the files present in minidagapp could become an App subclass

 Maybe these should go in their original repo, for example trigger_gen.py in the triggers repo
(I.e. maintenance is delegated to the people who wrote the C++ code), and minidagapp
would just plug all the Apps together...”

e | find it weird that minidagapp has to change every time a new feature is included.

e Some Apps need to know the full state of the system to create connections to them, for
example the MLI:;

 Could implement a System.finalise(), that goes into every app, module and execute user
code.

* |[n the case of the trigger, Trigger.finalise(system) could be setting all the MLT connections
etc...

 Some of this should disappear after network manager, | haven't looked at it

Pierre Lasorak 2 01/12/2021

NEUTRINO EXPERIMENT

mperial College Config thoughts LAXVE

e Discussion this morning with Alex...

* [ayered configuration generation:
e 1st step: local configuration (1 APA) = App class (right now generate functions)
e 2nd step: “glue” them together, global configuration (150 APAs) — System class (right now in mdapp_multiru_gen.py)
e 3rd step: assign host and end point (75 readout hosts) = K8s”? (right now in mdapp_multiru_gen.py)

 The main idea is that you can only go downwards, but you can reuse earlier stages in different way

e Some complications
» Difference between local and global is not so trivial

 Where should command generation happen?

mdapp_multiru_gen.py

 What do the intermediate configuration look like and how do we pass them

around? I |
trigger_kwargs = json.load("trigger_conf.json")
* There should be a fair bit of placeholders for hosts, network endpoints... trigger_kwargs.update({

. . "NUMBER_OF_RAWDATA_PRODCERS" : n_raw_prod_from_cl1i
* First pass idea:

« 1st step: save the arguments of the App.ctor (outside minidagapp) ¥)

the_system.apps["trigger"] = Trigger(**trigger_kwargs)

e 2nd step: create an even bigger json which specifies the whole system - -
(in minidagapp), for that, maybe we can use networkx saving facility”?

e 3rd step: replace host and endpoint placeholders with reality (in minidagapp)

the_system.save("system. json")

Pierre Lasorak 3 01/12/2021

