
Pierre Lasorak 01/12/2021

Config thoughts
• Building on Phil’s idea, we could separate each of Module, App, System become their own python module, one file per “entity”


• Module: Some task


• App: Some collections of tasks that run on the same host


• System: Many apps on different hosts


• Also separate out utilities: Connection, JsonExporter, CommandMaker 


• In minidaqapp, we effectively have Apps in different files that have the function generate(…)


• Could make this link explicit, and create a “Trigger” App class directly?


• For example:

1

trigger_app.py

mdapp_multiru_gen.py



Pierre Lasorak 01/12/2021

Config thoughts
• Most of the files present in minidaqapp could become an App subclass


• Maybe these should go in their original repo, for example trigger_gen.py in the triggers repo 
(i.e. maintenance is delegated to the people who wrote the C++ code), and minidaqapp 
would just plug all the Apps together…?


• I find it weird that minidaqapp has to change every time a new feature is included.


• Some Apps need to know the full state of the system to create connections to them, for 
example the MLT:


• Could implement a System.finalise(), that goes into every app, module and execute user 
code.


• In the case of the trigger, Trigger.finalise(system) could be setting all the MLT connections 
etc…


• Some of this should disappear after network manager, I haven’t looked at it

2



Pierre Lasorak 01/12/2021

Config thoughts
• Discussion this morning with Alex…


• Layered configuration generation:


• 1st step: local configuration (1 APA) → App class (right now generate functions)


• 2nd step: “glue” them together, global configuration (150 APAs) → System class (right now in mdapp_multiru_gen.py)


• 3rd step: assign host and end point (75 readout hosts) → K8s? (right now in mdapp_multiru_gen.py)


• The main idea is that you can only go downwards, but you can reuse earlier stages in different way


• Some complications


• Difference between local and global is not so trivial


• Where should command generation happen?


• What do the intermediate configuration look like and how do we pass them 
around?


• There should be a fair bit of placeholders for hosts, network endpoints…


• First pass idea:


• 1st step: save the arguments of the App.ctor (outside minidaqapp)


• 2nd step: create an even bigger json which specifies the whole system 
(in minidaqapp), for that, maybe we can use networkx saving facility?


• 3rd step: replace host and endpoint placeholders with reality (in minidaqapp)

3

mdapp_multiru_gen.py


