
DUNE DAQ Monitoring
Update and good practices

Marco Roda

Overview

● Josh at the coordination meeting last week asked a few more details on how to write a
metric
○ I put together something based on the experience so far

■ https://github.com/DUNE-DAQ/opmonlib/wiki/Good-practises-for-implementing-metrics

○ We have the instructions on how to create a schema and implement the metrics in the DAQModule code
■ They might not be perfect, but they are a good starting point
■ If you have questions, reach out to us

○ We have instructions on how to use the grafana instance
● Hopefully these good practices can connect the two instructions and give an bird eye view

● In terms of concrete things to do
○ No need for particular CCM privileges to write your own metric

■ Just being able to push on the dedicated repository is enough
○ Once the metrics are implemented in the C++ code you basically have two options

■ Contact someone in the CCM to help create your dashboard
● Most likely me

■ Prepare your own draft of a dashboard (you need an account for the instance we have on srv-009)
● Then someone from CCM will integrate it for you - there might be some iterations

2

https://github.com/DUNE-DAQ/opmonlib/wiki/Good-practises-for-implementing-metrics

Proposed good practices

● Keep it simple
○ High level code can do complicated transformations
○ Simple metrics are easier to understand for a user

■ It will keep the dashboards intuitive

● Prefer quantities that are related to a single cycle of get_info() call.
○ Avoid run related values

■ typical example cumulative counters
○ Data are uncorrelated and easier to combine
○ Exceptions

■ Errors counters can be left run-related as having the information at the end of
the run of the total errors is probably more useful than the frequencies of the
error

■ Numbers you want to publish as numbers

● Invariance under frequency of the get_info() cycle or the collection interval
○ The dashboard rendering should report an information in a way which is independent

from how often get_into() is called
○ or how many get_info() calls are used to construct a point in the final plot

3

Proposed good practices (continue)

● Consider how the metric will scale according to configuration.
○ Most likely, every DAQModule is used more than once in a single DAQ partition

■ Each module constructs its own metric and eventually the dashboard will aggregate them together
● it's possible to display each single value from each module, but it will overwhelm the user
● When deciding which metric to implement to monitor a specific aspect of your DAQModule, please consider

an effective aggregative plot that can display the relevant information and design your metric accordingly

○ Sometimes configuration swaps a DAQModule for another with a similar role but different underlying operations.
■ The standard paradigm for creating a schema suggests that every module should have it's own metric schema.

● This require changes in the dashboards depending on the module.
■ But this is not necessary: each module can have multiple (factorised) schema and these schema should be re-used

where appropriate across modules
■ Solution: identify common metrics that can be generated by the equivalent modules and use a single schema to

publish all of them, in this way the dashboard changes will be limited.
● Have a single module to have more than one schema associated with them, so unique information can be

added as part of a different schema
● Examples where this could be used already:

○ HSI modules (to be fixed because now it’s too late)
○ Timing monitoring: There should be a common timing info block that every timing endpoint has,

including the timing system itself
■ In addition an hierarchy of monitorables, some of which are called often and some which are

more detailed and are polled less often.
4

Proposed good practices (continue)

● Of course the main guide should be common sense and specific desirables or
requirements from each module
○ Use these ideas to produce something homogeneous

5

New dashboard - Queue monitoring

6

Queue monitoring - some details

● It just plots the occupancies of each queue in the system
○ Divided by application

● The Application name variable allows the plots to be present in the dashboard
that scales dynamically

7

Future plans

● Timing monitoring and DQM are going to be the next items

● The incoming NetworkManager
○ Development in the communications between DAQ apps

■ at the time with no specific monitoring
○ Adding a monitoring to the system is doable: I already had a discussion with Eric, main developer of

NetworkManager
○ We will need to change Application to interrogate the NetworkManager

■ In a similar way as we changed Application to interrogate QueueManager
○ I haven’t looked into the details yet, but there might be changes in the influxopmon as well

■ Alessandro and Alex should hear from me on this topic as soon as the code stabilises a bit

● Try to integrate more run control with monitoring to optimise the displayed information
○ First we need to work on RC itself

● Continue the support for the coldbox tests and all the new systems

8

