
 and  production as a 
probe of low x evolution - an update
J/Ψ Ψ(2s)

Martin Hentschinski

Universidad de las Americas Puebla


Ex-Hacienda Santa Catarina Martir S/N

San Andrés Cholula


72820 Puebla, Mexico

martin.hentschinski@gmail.com

Snowmass 2021 contributions from EF06, 2021, 08 of December 2021, Online

based on: 

• I. Bautista, Fernandez Tellez, MH, PRD 94 (2016) 5, 054002, arXiv:1607.05203

• A. Arroyo Garcia, MH, K.Kutak, PLB 795 (2019) 569-575, arXiv:1904.04394

• MH, E. Padron Molina, Phys.Rev.D 103 (2021) 7, 074008 arXiv:2011.02640

• Alcazar Peredo, MH, in preparation

mailto:martin.hentschinski@gmail.com


photo induced exclusive photo-production of J/𝛹s and Ψ(2s)

J/Ψ,Υ

e, p, Pb

W 2

t

q

p

• hard scale: charm 
mass (small, but perturbative)


• reach up to x≳.5･10-6


• perturbative cross-
check: ϒ (b-mass)


• measured at LHC 
(LHCb, ALICE, CMS) & 
HERA (H1, ZEUS)

technical details: see appendix 
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[related to gluon distribution]

in the transition region towards high and saturated gluon densities.

To fully access this question, we first recapitulate which possible impact large gluon den-
sities could have on the observable. First of all, the presence of high density e↵ects cannot be
seen directly at the level of the observable. The scattering amplitude Eq. (5) depends only
on the dipole amplitude, which itself can be expressed as the correlator of two Wilson lines
which resum the gluonic field of the proton, see e.g. [46]. Even though the dipole amplitude
resums the interaction of the qq̄-dipole with an in principle infinite number of gluons, the
gluons couple to the qq̄-dipole like a single gluon; the “reggeize” in the language of [47] and
therefore appear like a single gluon. At the level of our phenomenological study, this property
reveals itself through Eq. (9), which relates the dipole cross-section to the unintegrated gluon
density. To make multiple re-scattering of partons on the target field visible, it would be
necessary to resolve the hadronic final state of the dissociated photon, see e.g. [48, 49]. This
not the case for photo-production of vector mesons. The only place where one could expect
a signal for the presence of saturation e↵ects is therefore the x-dependence of the underlying
gluon distributions. As an immediate consequence, any framework which is based on a direct
fit of the x-dependence at the J/ scale (such as collinear parton distribution functions)
does not exclude presence of saturation e↵ects; it merely demonstrates the ability to fit the
resulting x-dependence of the underlying gluon distribution. While this initial x-distribution
can be evolved through DGLAP evolution to events with higher hard scales, such events
are generally characterized by larger values of x (x⌥ > 2.28 · 10�5 vs. xJ/ > 2.99 · 10�6

in the current case). Taking further into account that DGLAP evolution is known to shift
large x input to lower x, it is therefore save to say that the mere ability of DGLAP fits to
accommodate low x J/ photo-production data, does not exclude the potential presence of
sizable non-linear e↵ects for the data points at highest W -values.

Instead of DGLAP evolution, a suitable benchmark to establish presence/absence of gluon
saturation is provided by linear NLO BFKL evolution, such as the HSS gluon. While the
HSS gluon provides a very good description of both ⌥ and J/ photo-production data,
the following observation can be made: Recalling the particularly solution of NLO BFKL
evolution used for the HSS-fit, one finds at the at level of the dipole cross-section two terms
d
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kernel calculated 
in pQCD

linear BFKL evolution = subset of 
complete BK

non-linear term

relevant for N~1

 (=high density)

Goal: confront linear vs. non-linear



Most recent study

4

- Use HSS NLO BFKL fit for linear evolution 
[MH, Salas, Sabio Vera; 1209.1353; 
1301.5283]  


- Use KS LO BK fit for non-linear evolution
BFKL & exclusive Vector Mesons

Good description of cominbed HERA [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
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Figure 3: Study of the dependence of F2(x, Q2) on x using the LO photon
impact factor (solid lines) and the kinematically improved one (dashed lines).
Q2 runs from 1.2 to 120 GeV2.
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data: [H1 & ZEUS collab. 0911.0884]

Martin Hentschinski (UDLAP) Forward physics & small x gluon 23/05/2017 19 / 43

[Kutak, Sapeta; 1205.5035]
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Figure 3: The proton structure function F2(x,Q2) from the fit of our framework, in its linear
and nonlinear variant, to the combined data from HERA [26] as a function of x for the Q2 range
from 1.5 to 400 GeV2 (with the vertical offsets of 0.2).

The corresponding equation for the unintegrated gluon density reads [27, 45]
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where z = x/x′ (see Fig. 2 for explanation of the variables). For convenience, we omit the g
subscript in the unintegrated gluon density symbol and keep only the subscript denoting the

5

Both fitted to 
combined HERA 
data

[MH, E. Padron Molina,:2011.02640]




improved transition amplitude VMγ →

5

[Hufner, Y. Ivanov, B. Kopeliovich, A. Tarasov; hep-ph/0007111],

[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila;  1812.03001; 1901.02664]


includes relativistic spin rotation effects + (more) realistic  potential

both for  and 

cc̄
J/Ψ Ψ(2s)

with an energy dependent t slope parameter BD,

BD(W ) =
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b0 + 4↵0 ln

W
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�
GeV�2. (3)

The total cross-section for vector meson production is therefore obtained as
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1
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d�
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(�p ! V p)

����
t=0

. (4)

The uncertainty introduced through the modeling of the t-dependence mainly a↵ects the
overall normalization of the cross-section with a mild logarithmic dependence on the energy.
To determine the scattering amplitude, we first note that the dominant contribution is pro-
vided by its imaginary part. Corrections due to the real part of the scattering amplitude can
be estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (5)

As noted in [22], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� =const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. To determine the latter, we go beyond the Gaussian model for
the light-cone wave function of the vector mesons and use instead a re-fined description which
includes relativistic spin-rotation e↵ects. The imaginary part of the scattering amplitude is
then in the forward limit obtained as [34–36]
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with r = |r|. The functions ⌃
(1,2)
T describe the transition of a transverse polarized photon

into a vector meson V and are given by [35]
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and êf = 2/3 is the charge of the charm quark while ↵e.m. the electromagnetic fine structure
constant; Nc = 3 denotes the number of colors and K0 is a Bessel function of the second
kind. Finally, with mf the mass of the charm quark, we have

m2

T = m2

f + p2 m2

L = 4m2

fz(1� z), (9)
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• depends both on dipole cross-section and its derivative

• wave functions have been obtained in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila;  1812.03001; 1901.02664] through 

numerical solution to corresponding Schrödinger equation


• transition function factorizes for real photon ( )Q = 0

•  provided as table by authors 
of   [1812.03001; 1901.02664] 
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and êf = 2/3 is the charge of the charm quark while ↵e.m. the electromagnetic fine structure
constant; Nc = 3 denotes the number of colors and K0 is a Bessel function of the second
kind. Finally, with mf the mass of the charm quark, we have

m2

T = m2

f + p2 m2

L = 4m2

fz(1� z), (9)

4

r

z

1− z

k k

p p′

γ
J/Ψ,Ψ(2s)

https://arxiv.org/abs/hep-ph/0007111
https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664
https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664
https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664
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Observations:

7

• Fixed scale BFKL (used for the original fit) develops instability 


• Can be cured by setting renormalization scale  

 transverse size of dipole

μ2 =
1
r2

+ μ2
0

r :

There are difference between BFKL (HSS fit) and BK (KS fit), but they do not 
really allow to distinguish between both descriptions


- theory uncertainties [expect same size for BK as for BFKL]


- Experimental uncertainties are underestimated [error bars = propagation of 
the uncertainty of the rapidity distribution]



More interesting: the ratio σ[Ψ(2s)]/σ[J/Ψ]

8

• rise of non-linear gluon also observed in 
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila;  
1812.03001; 1901.02664] →KST dipole X-section 
[Kopeliovich, Schäfer, Tarasov, hep-ph/9908245] 
 


• here: confirmed for KS (BK) gluon

• Rise of the non-linear gluon


• No rise is present for HSS (NLO BFKL) 
gluon (stabilized version) 

• both slope & curvature differ 

• general feature of perturbative QCD 
evolution?

problem: no data at high energies 
 
(  and  LHCb data in different -bins)J/Ψ Ψ(2s) W

50 100 500 1000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Here: Buchmüller-Tye, HO very similar

https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664
https://arxiv.org/abs/hep-ph/9908245


Feature of the fits or something 
more general?

9

constant ratio → linear

Growing ration → non-linear



The ratio within the GBW model

10

GBW model: [Golec-Biernat, Wusthoff, hep-ph/9807513] 


 with saturation scale 


linearized version: 


σqq̄(x, r) = σ0 (1 − exp(−
r2Q2

s (x)
4 ) Q2

s (x) = Q2
0 ( x

x0 )
λ

σlin.
qq̄ (x, r) = σ0

r2Q2
s (x)
4

general feeling: it would be good to understand the observed behavior a bit better

how? use a simple model & see what it tells us

use most recent fit [Golec-Biernat, Sapeta, 1711.11360] to combined HERA data with 
  and 
Q2 ≤ 10GeV2 χ2/Ndof = 352/219 = 1.61

σ0[mb] λ x0/10−4

27.43±0.35 0.248±0.002 0.40±0.04



The ratio for the GBW model
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ℑm𝒜lin.(x) ∼ Q2
s (x) ⋅ ∫ dr…

work in progress

with an energy dependent t slope parameter BD,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (3)

The total cross-section for vector meson production is therefore obtained as

��p!V p(W 2) =
1

BD(W )

d�

dt
(�p ! V p)

����
t=0

. (4)

The uncertainty introduced through the modeling of the t-dependence mainly a↵ects the
overall normalization of the cross-section with a mild logarithmic dependence on the energy.
To determine the scattering amplitude, we first note that the dominant contribution is pro-
vided by its imaginary part. Corrections due to the real part of the scattering amplitude can
be estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (5)

As noted in [22], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� =const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. To determine the latter, we go beyond the Gaussian model for
the light-cone wave function of the vector mesons and use instead a re-fined description which
includes relativistic spin-rotation e↵ects. The imaginary part of the scattering amplitude is
then in the forward limit obtained as [34–36]

=mAT (W
2, t = 0) =

Z
d2r

2

4�qq̄
✓
M2

V

W 2
, r

◆
⌃
(1)

T (r) +
d�qq̄

⇣
M2

V
W 2 , r

⌘

dr
⌃
(2)

T (r)

3

5 , (6)

with r = |r|. The functions ⌃
(1,2)
T describe the transition of a transverse polarized photon

into a vector meson V and are given by [35]

⌃
(i)
T (r) = êf

r
↵e.m.Nc

2⇡2
K0(mfr)⌅

(i)(r), i = 1, 2 (7)

where

⌅(1)(r) =

1Z

0

dz

Z
d2p

2⇡
eip·r

m2

T +mTmL � 2p2T z(1� z)

mT +mL
 V (z, |p|),

⌅(2)(r) =

1Z

0

dz

Z
d2p

2⇡
eip·r|p|m

2

T +mTmL � 2p2z(1� z)

2mT (mT +mL)
 V (z, |p|), (8)

and êf = 2/3 is the charge of the charm quark while ↵e.m. the electromagnetic fine structure
constant; Nc = 3 denotes the number of colors and K0 is a Bessel function of the second
kind. Finally, with mf the mass of the charm quark, we have

m2

T = m2

f + p2 m2

L = 4m2

fz(1� z), (9)

4

Recall:

Linear GWBThe outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2

V /W
2

with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form

d�

dt
(�p ! V p)

����
t=0

=
1

16⇡

��A�p!V p(W 2, t = 0)
��2 , (1)

where A(W 2, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet
exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].

A�p!V p(x, t = 0) =

✓
i+ tan

�(x)⇡

2

◆
·
Z

drW (r)

✓
i+ tan

�(x)⇡

2

◆
·
Z

drW (r)�qq̄(x, r)

⇠ e�BD(x)|t|

=mA�p!V p(x, t = 0) =

Z 1

0

drW (r)�qq̄(x, r)

A�p!V p(x, t = 0) =

✓
i+ tan

�(x)⇡

2

◆
· =mA�p!V p(x, t = 0)

2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (2)

1
Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions

3

Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as

��p!V p(W 2) =
1

BD(W )

d�

dt
(�p ! V p)

����
t=0

. (3)

The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (4)

d�

dt
(�p ! V p) = e�BD(W )·|t| · d�

dt
(�p ! V p)

����
t=0

(5)

As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]

=mA�p!V p
T (W, t = 0) = 2

Z
d2r

Z
d2b

Z
1

0

dz

4⇡
( ⇤

V )T N (x, r, b) (6)

where N (x, r, b) is the dipole amplitude and T denotes transverse polarization of the quasi-
real photon. Here

( ⇤
V )T (r, z) =

êfeNc

⇡z(1� z)

⇢
m2

fK0(✏r)�T (r, z)�
⇥
z2 + (1� z)2

⇤
✏K1(✏r)@r�T (r, z)

�
, (7)

with ✏2 = m2

f for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and êf = 2/3, �1/3. For the scalar parts of the wave functions �T,L(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �T (r, z), has the following
general form [18,32],

�1s
T,L(r, z) = NT,Lz(1� z) exp

 
�

m2

fR2

1s

8z(1� z)
� 2z(1� z)r2

R2

1s

+
m2

fR2

1s

2

!
. (8)

The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,

2

Z
d2bN (x, r, b) = �qq̄(x, r) . (9)

4

Cross-section:
•  cancels for the 
ratio


•Ratio constant with energy for linear 
GBW

Qs(x) = Qs(M2
V /W2)
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The ratio within the GBW model
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Towards smaller x

-dependence of the “slope”  


- for linear model -dependence in    we have   =const.


- Non-trivial -dependence for complete GBW model → rise of the ratio

r
d ln σqq̄

ln 1/x

x Q2
s (x) = Q2

0 ( x
x0 )

λ
d ln σqq̄

ln 1/x
= λ

r



The DGLAP improved saturation model
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[Bartels, Golec-Biernat, Kowalski; hep-ph/0203258]

Essentially the GBW model with DGLAP evolution

Fit mb σ0[mb] Ag λg C µ2
0[GeV2] χ2/Ndof

[28] − 22.40 1.35 0.079 0.38 1.73 2.02

[28] 4.6 22.70 1.23 0.080 0.35 1.60 2.43

1 − 22.60 ± 0.26 1.18 ± 0.15 0.11 ± 0.03 0.29 ± 0.05 1.85± 0.20 536/382=1.40

2 4.6 22.93 ± 0.27 1.07 ± 0.13 0.11 ± 0.03 0.27 ± 0.04 1.74± 0.16 578/382=1.51

Table 3. The results of the fits to the HERA data for Q2 ≤ 650GeV2 with Np = 387 points, using
the dipole cross section (2.9) with the scale (2.17). The quark masses ml = 0 and mc = 1.3GeV.
χ2/Ndof computed with the parameters from [28] and the scale (2.10) are given in the first two
rows. The parameters of Fit 2 are used for further analysis.

2.2 Fits with the DGLAP improved saturation model

The DGLAP improved saturation model [27, 28] implements the dipole cross section given

by

σdip(r, x) = σ0

{

1− exp

(

−
π2r2 αs(µ2)xg(x, µ2)

3σ0

)}

, (2.9)

where g(x, µ2) is the gluon distributions taken at the scale

µ2 =
C

r2
+ µ2

0 . (2.10)

The gluon distribution is evolved with the DGLAP evolution equations truncated to the

gluonic sector,

∂g(x, µ2)

∂ lnµ2
=

αs(µ2)

2π

∫ 1

x

dz

z
Pgg(x) g(x/z, µ

2) , (2.11)

from the initial condition

xg(x,Q2
0) = Ag x

−λg (1− x)5.6 , (2.12)

taken at the scale Q0 = 1GeV. The choice of the power 5.6, which regulates the large-x

behaviour, is motivated by global fits to DIS data with the LO DGLAP equations, see

[27, 28] for more details. The splitting function Pgg contains real and virtual terms with

the number of active quark flavours nf in the latter one

Pqq(z) = 2Nc

(

z

(1− z)+
+

1− z

z
+ z(1− z)

)

+ δ(1 − z)
11CA − 4nfTR

6
(2.13)

with CA = Nc = 3 and TR = 1/2. In the leading order strong coupling constant we set

ΛQCD = 300MeV. Thus, the model has five parameters to fit: σ0, Ag,λg, C and µ2
0.

The dipole cross section (2.9) has the property of colour transparency and tends to the

perturbative QCD result in the limit r → 0. Indeed, for small dipoles, the scale µ2 ≈ C/r2

and the dipole cross section is proportional to r2 with the logarithmic modifications due

to the scale dependence of the gluon distribution [45],

σdip ≈
π2

3
r2αs(C/r2)xg(x,C/r2) . (2.14)

– 6 –

Factorization scale originally: 

Fit mb σ0[mb] Ag λg C µ2
0[GeV2] χ2/Ndof

[28] − 22.40 1.35 0.079 0.38 1.73 2.02

[28] 4.6 22.70 1.23 0.080 0.35 1.60 2.43

1 − 22.60 ± 0.26 1.18 ± 0.15 0.11 ± 0.03 0.29 ± 0.05 1.85± 0.20 536/382=1.40

2 4.6 22.93 ± 0.27 1.07 ± 0.13 0.11 ± 0.03 0.27 ± 0.04 1.74± 0.16 578/382=1.51

Table 3. The results of the fits to the HERA data for Q2 ≤ 650GeV2 with Np = 387 points, using
the dipole cross section (2.9) with the scale (2.17). The quark masses ml = 0 and mc = 1.3GeV.
χ2/Ndof computed with the parameters from [28] and the scale (2.10) are given in the first two
rows. The parameters of Fit 2 are used for further analysis.

2.2 Fits with the DGLAP improved saturation model

The DGLAP improved saturation model [27, 28] implements the dipole cross section given

by

σdip(r, x) = σ0

{

1− exp

(

−
π2r2 αs(µ2)xg(x, µ2)

3σ0

)}

, (2.9)

where g(x, µ2) is the gluon distributions taken at the scale

µ2 =
C

r2
+ µ2

0 . (2.10)

The gluon distribution is evolved with the DGLAP evolution equations truncated to the

gluonic sector,

∂g(x, µ2)

∂ lnµ2
=

αs(µ2)

2π

∫ 1

x

dz

z
Pgg(x) g(x/z, µ

2) , (2.11)

from the initial condition

xg(x,Q2
0) = Ag x

−λg (1− x)5.6 , (2.12)

taken at the scale Q0 = 1GeV. The choice of the power 5.6, which regulates the large-x

behaviour, is motivated by global fits to DIS data with the LO DGLAP equations, see

[27, 28] for more details. The splitting function Pgg contains real and virtual terms with

the number of active quark flavours nf in the latter one

Pqq(z) = 2Nc

(

z

(1− z)+
+

1− z

z
+ z(1− z)

)

+ δ(1 − z)
11CA − 4nfTR

6
(2.13)

with CA = Nc = 3 and TR = 1/2. In the leading order strong coupling constant we set

ΛQCD = 300MeV. Thus, the model has five parameters to fit: σ0, Ag,λg, C and µ2
0.

The dipole cross section (2.9) has the property of colour transparency and tends to the

perturbative QCD result in the limit r → 0. Indeed, for small dipoles, the scale µ2 ≈ C/r2

and the dipole cross section is proportional to r2 with the logarithmic modifications due

to the scale dependence of the gluon distribution [45],

σdip ≈
π2

3
r2αs(C/r2)xg(x,C/r2) . (2.14)

– 6 –

Recent fit:

DGLAP improved model

r (fm)

σ
/σ
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rQs

σ
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0
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Eq.(2.15)
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Figure 2. Dipole cross section (2.9) for the scale (2.17) with the parameters from Fit 2 in Table 3
(dashed lines) as a function r (left plot) and rQs (right plot) for x = 10−6, . . . , 10−2 (curves from
left to right, respectively). The solid lines, corresponding to Eq. (2.15), merge into one solid line
in the right plot due to geometric scaling with the saturation scale (2.16). For rQs ≥ 1, also the
dashed curves merge due to geometric scaling in the dipole cross section (2.9) in this region.

These additional logarithms allow better fits to the data for large values of Q2. In the limit

of large dipoles µ2 ≈ µ2
0, which leads to

σdip ≈ σ0

{

1− exp

(

−
π2r2 αs(µ2

0)xg(x, µ
2
0)

3σ0

)}

. (2.15)

Thus, at large r, we find the GBW form of the dipole cross section with the saturation

scale

Q2
s(x) =

4π2

3σ0
αs(µ

2
0)xg(x, µ

2
0) , (2.16)

with the x dependence given by the gluon distribution taken at the scale µ2
0. Geometric

scaling is strictly valid for (2.15), which is not the case for small dipoles when an additional

r dependence is introduced in the dipole cross section (2.9) through the scale (2.10).

The above features of the dipole cross section can also be obtained for a slightly

different choice of the scale µ,

µ2 =
µ2
0

1− exp(−µ2
0 r

2/C)
, (2.17)

which interpolates smoothly between the C/r2 behaviour for small r and the constant

behaviour, µ2 = µ2
0, for r → ∞. The fit quality is better for such a choice, thus in the

forthcoming, we present the results of the fits with the above scale.

The results of the fits are presented in Table 3. The parabolic errors of the fit param-

eters are given by MINOS from the MINUIT package. We no longer restrict the data to

– 7 –

[Golec-Biernat, Sapeta; 1711.11360]

In common: 

- for large dipole sizes , 



- Otherwise 

r
μ → μ0

∼ C/r2

Saturation scale becomes -dependent → includes correct DGLAP limit for small r r
Complementary to BFKL/BK study



Results: 
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- ratio is not constant (influence of DGLAP evolution), 
but clear difference between linearized version and 
complete BGK model 


- Challenge: difficult to estimate uncertainties 

- It would be good to have data here  

[re-binning of LHCb data would already help a lot]



Discussion & Conclusion

15

���� ���� ���� ���� �
���

���

���

���

���

���

���

�/��
���� ���� ���� ���� �

���

���

���

���

���

���

���

���

�/��

- Difference between  and  at relative large dipole size 

- Full non-linear model: non-trivial -dependence in this region

- Linear model with factorization scale frozen at large dipole size , there is not much happening 
→ constant ratio


- Trivial for GBW model; also seen for BFKL vs BK (QCD low x evolution)

- Prediction depends on VM wave function, but the tendency should be stable

J/Ψ Ψ(2s) r
x

r

Towards smaller x
Towards smaller x

“Slope" for complete BGK "Slope" for linear BGK λ =
d ln σqq̄

ln 1/x



Appendix



potentials for wave 
functions: 
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Buchmüller-Tye Potential:  Coulomb-like 
behavior at small  and a string-like behavior 
at large  [Buchmüller, Tye; PRD24, 132 
(1981)]

r
r

as implemented in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila;  1812.03001; 1901.02664] 

0.01 0.10 1 10

0.0000

0.0002

0.0004

0.0006

harmonic oscillator (HO):  

 → Gaussian shape

U(r) =
mQ

2
ω2r2

ω = 0.3GeV

0.01 0.10 1 10

0.0000

0.0002

0.0004

0.0006

Note: 

• plots show transition function , not wave 

function

• : node structure of wave function absent in 

transition after integration over photon momentum 
fraction 


•  enhanced for , but still considerable 
smaller

γ → VM

Ψ(2s)

z
Σ(2)(r) Ψ(2s)

→  gives access to a (slightly) different region in  than Ψ(2s) r J/Ψ

→ requires separate diffractive slopes  as obtained in  
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila;  1812.03001; 1901.02664] 

BD(W)

https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664
https://arxiv.org/abs/1812.03001
https://arxiv.org/abs/1901.02664


how to compare to experiment?

The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2

V /W
2

with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form
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where A(W 2, t) denotes the scattering amplitude for the reaction �p ! V p for color singlet
exchange in the t-channel, with an overall factor W 2 already extracted. For a more detailed
discussion of the kinematics we refer to [25].
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2.1 The theoretical setup of our study

In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,

BD(W ) =
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Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions

3

a) analytic properties of scattering amplitude → real part

Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as
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The uncertainty introduced by the modeling of the t-dependence mainly a↵ects the overall
normalization of the cross-section with a mild logarithmic dependence on the energy. To
determine the scattering amplitude, we first note that the dominant contribution is provided
by its imaginary part. Corrections due to the real part of the scattering amplitude can be
estimated using dispersion relations, in particular

<eA(W 2, t)

=mA(W 2, t)
= tan

�⇡

2
, with �(x) =

d ln=mA(x, t)

d ln 1/x
. (4)

As noted in [25,30], the dependence of the slope parameter � on energy W provides a sizable
correction to the W dependence of the complete cross-section. We therefore do not assume
� = const., but instead determine the slope � directly from the W -dependent imaginary part
of the scattering amplitude. The latter is obtained from [17,18]
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with ✏2 = m2

f for real photons. Furthermore r =
p
r2, while f = c, b denotes the flavor of the

heavy quark and êf = 2/3, �1/3. For the scalar parts of the wave functions �T,L(r, z), we
employ the boosted Gaussian wave-functions with the Brodsky-Huang-Lepage prescription
[31]. For the ground state vector meson (1s) the scalar function �T (r, z), has the following
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The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.
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an exponential drop-o↵ with |t|, � ⇠ exp [�|t|BD(W )] is used with an energy dependent t
slope parameter BD, as motivated by Regge theory,

BD(W ) =


b0 + 4↵0 ln

W

W0

�
GeV�2. (2)

1
Besides HERA data we also use the LHC p-p and Pb-p data where highly boosted p and Pb respectively

become a source of photons leading to Ultra Peripheral Collisions

3

b) differential Xsection at t=0:

c) from experiment:

Following [21, 22], we use for the numerical values ↵0 = 0.06 GeV�2, W0 = 90 GeV and

bJ/ 
0

= 4.9 GeV�2 in the case of the J/ , while b⌥
0

= 4.63 GeV�2 for ⌥ production. The
total cross-section for vector meson production is therefore obtained as

��p!V p(W 2) =
1

BD(W )

d�

dt
(�p ! V p)

����
t=0

. (3)
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The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
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The free parameters NT and R1s of this model have been determined in various studies from
the wave function normalization and the decay width of the vector mesons. In the following
we use the values found in [14] ( J/ ) and [16] ( ⌥). The parameters are summarized in
Tab. 1. In the forward limit t = 0, one further has,
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The outline of this letter is as follows: In Sec. 2 we provide details of our theoretical
description, Sec. 3 is dedicated to a discussion of the large perturbative corrections of the
NLO BFKL gluon in the large W region while in Sec. 4 we present our conclusions.

2 Energy dependence of the photo-production cross-section

We study the process 1 �(q) + p(p) ! V (q0) + p(p0) where V = J/ ,⌥(1S) and � denotes a
quasi-real photon with virtuality Q ! 0; W 2 = (q+ p)2 is the squared center-of-mass energy
of the �(q)+p(p) collision. The x value probed in such a collision is obtained as x ' M2
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with MV the mass of the vector meson. With the momentum transfer t = (q � q0)2, the
di↵erential cross-section for the exclusive production of a vector meson can be written in the
following form
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In the following we determine the total photo-production cross-section, based on an inclusive
gluon distribution. This is possible following a two step procedure, frequently employed in
the literature: First one determines the di↵erential cross-section at zero momentum transfer
t = 0 (which can be expressed in terms of the inclusive gluon distribution); in a second step
the t-dependence is modeled which then allows us to relate the di↵erential cross-section at
t = 0 to the integrated cross-section. Here we follow the prescription given in [21,22], where
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extracted from data
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