J / Ψ and $\Psi(2 s)$ production as a probe of low x evolution - an update

Martin Hentschinski

Universidad de las Americas Puebla Ex-Hacienda Santa Catarina Martir S/N

San Andrés Cholula
72820 Puebla, Mexico
martin.hentschinski@gmail.com
based on:

- I. Bautista, Fernandez Tellez, MH, PRD 94 (2016) 5, 054002, arXiv:1607.05203
- A. Arroyo Garcia, MH, K.Kutak, PLB 795 (2019) 569-575, arXiv:1904.04394
- MH, E. Padron Molina, Phys.Rev.D 103 (2021) 7, 074008 arXiv:2011.02640
- Alcazar Peredo, MH, in preparation

Snowmass 2021 contributions from EF06, 2021, 08 of December 2021, Online

photo induced exclusive photo-production of $\mathrm{J} / \Psi \mathrm{s}$ and $\Psi(2 s)$

technical details: see appendix

- hard scale: charm
maSS (small, but perturbative)
- reach up to $x \geq .5 \cdot 10^{-6}$
- perturbative crosscheck: Υ (b-mass)
- measured at LHC (LHCb, ALICE, CMS) \& HERA (H1, ZEUS)

Goal: confront linear vs. non-linear

Most recent study

- Use HSS NLO BFKL fit for linear evolution
[MH, Salas, Sabio Vera; 1209.1353;
1301.5283]
- Use KS LO BK fit for non-linear evolution [Kutak, Sapeta; 1205.5035]

Both fitted to combined HERA data

improved transition amplitude $\gamma \rightarrow$ VM

includes relativistic spin rotation effects + (more) realistic $c \bar{c}$ potential both for J / Ψ and $\Psi(2 s)$
[Hufner, Y. Ivanov, B. Kopeliovich, A. Tarasov; hep-ph/0007111],
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664]
$\Im m \mathcal{A}_{T}\left(W^{2}, t=0\right)=\int d^{2} \boldsymbol{r}\left[\sigma_{q \bar{q}}\left(\frac{M_{V}^{2}}{W^{2}}, r\right) \bar{\Sigma}_{T}^{(1)}(r)+\frac{d \sigma_{q \bar{q}}\left(\frac{M_{V}^{2}}{W^{2}}, r\right)}{d r} \bar{\Sigma}_{T}^{(2)}(r)\right]$

- depends both on dipole cross-section and its derivative
- wave functions have been obtained in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664] through numerical solution to corresponding Schrödinger equation
- transition function factorizes for real photon $(Q=0) \bar{\Sigma}_{T}^{(i)}(r)=\hat{e}_{f} \sqrt{\frac{\alpha_{e . m \cdot N_{c}}^{2}}{2 \pi^{2}}} K_{0}\left(m_{f} r\right) \Xi^{(i)}(r), \quad i=1,2$

$$
\begin{aligned}
& \Xi^{(1)}(r)=\int_{0}^{1} d z \int \frac{d^{2} \boldsymbol{p}}{2 \pi} e^{i \boldsymbol{p} \cdot \boldsymbol{r}} \frac{m_{T}^{2}+m_{T} m_{L}-2 p_{T}^{2} z(1-z)}{m_{T}+m_{L}} \Psi_{V}(z,|\boldsymbol{p}|), \\
& \Xi^{(2)}(r)=\int_{0}^{1} d z \int \frac{d^{2} \boldsymbol{p}}{2 \pi} e^{i \boldsymbol{p} \cdot \boldsymbol{r}}|\boldsymbol{p}| \frac{m_{T}^{2}+m_{T} m_{L}-2 \boldsymbol{p}^{2} z(1-z)}{2 m_{T}\left(m_{T}+m_{L}\right)} \Psi_{V}(z,|\boldsymbol{p}|),
\end{aligned}
$$

- $\Psi_{V}(z, \mathbf{p})$ provided as table by authors of [1812.03001; 1901.02664]
- $m_{T}^{2}=m_{f}^{2}+\boldsymbol{p}^{2} \quad m_{L}^{2}=4 m_{f}^{2} z(1-z)$,

Buchmüller-Tye potential

Harmonic Oscillator potential
— KS \times K-factor of 2.19
HSS (NLO BFKL, $M^{2}=3.27 \mathrm{GeV}^{2}$)
\times K-factor of 1.24
HSS (NLO BFKL, dipole scale)
$\quad \underset{\times \text { K-factor of } 1.16}{\text { HSS (NLO BFKL, dipole scale }}$

- KS, HO wave function

HSS (NLO BFKL, $M^{2}=3.27 \mathrm{GeV}^{2}$,

Observations:

- Fixed scale BFKL (used for the original fit) develops instability
- Can be cured by setting renormalization scale $\mu^{2}=\frac{1}{\mathbf{r}^{2}}+\mu_{0}^{2}$
r : transverse size of dipole

There are difference between BFKL (HSS fit) and BK (KS fit), but they do not really allow to distinguish between both descriptions

- theory uncertainties [expect same size for BK as for BFKL]
- Experimental uncertainties are underestimated [error bars = propagation of the uncertainty of the rapidity distribution]

More interesting: the ratio $\sigma[\Psi(2 s)] / \sigma[J / \Psi]$

problem: no data at high energies
(J / Ψ and $\Psi(2 s)$ LHCb data in different W-bins)

- rise of non-linear gluon also observed in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila: 1812.03001; 1901.02664] \rightarrow KST dipole X-section [Kopeliovich, Schäfer, Tarasov, hep-ph/9908245]
- here: confirmed for $\mathrm{KS}(\mathrm{BK})$ gluon

Feature of the fits or something more general?

constant ratio \rightarrow linear
Growing ration \rightarrow non-linear

The ratio within the GBW model

general feeling: it would be good to understand the observed behavior a bit better how? use a simple model \& see what it tells us

GBW model: [Golec-Biernat, Wusthoff, hep-ph/9807513]
$\sigma_{q \bar{q}}(x, r)=\sigma_{0}\left(1-\exp \left(-\frac{r^{2} Q_{s}^{2}(x)}{4}\right)\right.$ with saturation scale $Q_{s}^{2}(x)=Q_{0}^{2}\left(\frac{x}{x_{0}}\right)^{\lambda}$
linearized version: $\quad \sigma_{q \bar{q}}^{l i n}(x, r)=\sigma_{0} \frac{r^{2} Q_{s}^{2}(x)}{4}$
use most recent fit [Golec-Biernat, Sapeta, 1711.11360] to combined HERA data with
$Q^{2} \leq 10 \mathrm{GeV}^{2}$ and $\chi^{2} / N_{d o f}=352 / 219=1.61$

$\sigma_{0}[\mathrm{mb}]$	λ	$x_{0} / 10^{-4}$
$\substack{27.43 \pm 0.35 \\ 10}$	0.248 ± 0.002	0.40 ± 0.04

The ratio for the GBW model

Recall:

$$
\begin{gathered}
\Im m \mathcal{A}_{T}\left(W^{2}, t=0\right)=\int d^{2} \boldsymbol{r}\left[\sigma_{q \bar{q}}\left(\frac{M_{V}^{2}}{W^{2}}, r\right) \bar{\Sigma}_{T}^{(1)}(r)+\frac{d \sigma_{q \bar{q}}\left(\frac{M_{V}^{2}}{W^{2}}, r\right)}{d r} \bar{\Sigma}_{T}^{(2)}(r)\right] \\
\text { Linear GWB } \\
\Im m \mathscr{A}^{\text {lin. }}(x) \sim Q_{s}^{2}(x) \cdot \int d r \ldots
\end{gathered}
$$

Cross-section:

$\left.\frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}=\frac{1}{16 \pi}\left|\mathcal{A}^{\gamma p \rightarrow V^{p}}\left(W^{2}, t=0\right)\right|^{2}$
$\sigma^{\gamma p \rightarrow V_{p}}\left(W^{2}\right)=\left.\frac{1}{B_{D}(W)} \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}$

$$
\begin{aligned}
& \text { - } Q_{s}(x)=Q_{s}\left(M_{V}^{2} / W^{2}\right) \text { cancels for the } \\
& \text { ratio } \\
& \text { - Ratio constant with energy for linear } \\
& \text { GBW }
\end{aligned}
$$

The ratio within the GBW model

r-dependence of the "slope" $\frac{d \ln \sigma_{q \bar{q}}}{\ln 1 / x}$

- for linear model x-dependence in $Q_{s}^{2}(x)=Q_{0}^{2}\left(\frac{x}{x_{0}}\right)^{\lambda}$ we have $\frac{d \ln \sigma_{q \bar{q}}}{\ln 1 / x}=\lambda=$ const.
- Non-trivial r-dependence for complete GBW model \rightarrow rise of the ratio

The DGLAP improved saturation model

Essentially the GBW model with DGLAP evolution

$$
\sigma_{\text {dip }}(r, x)=\sigma_{0}\left\{1-\exp \left(-\frac{\pi^{2} r^{2} \alpha_{s}\left(\mu^{2}\right) x g\left(x, \mu^{2}\right)}{3 \sigma_{0}}\right)\right\}
$$

Factorization scale originally: $\quad \mu^{2}=\frac{C}{r^{2}}+\mu_{0}^{2}$

Recent fit:

$$
\mu^{2}=\frac{\mu_{0}^{2}}{1-\exp \left(-\mu_{0}^{2} r^{2} / C\right)}
$$

In common:

- for large dipole sizes r, $\mu \rightarrow \mu_{0}$
- Otherwise $\sim C / r^{2}$

Saturation scale becomes r-dependent \rightarrow includes correct DGLAP limit for small r Complementary to BFKL/BK study

Results:

- ratio is not constant (influence of DGLAP evolution), but clear difference between linearized version and complete BGK model
- Challenge: difficult to estimate uncertainties
- It would be good to have data here
[re-binning of LHCb data would already help a lot]

Discussion \& Conclusion

Towards smaller x

"Slope" for complete BGK

$$
\text { "Slope" for linear BGK } \quad \lambda=\frac{d \ln \sigma_{q \bar{q}}}{\ln 1 / x}
$$

- Difference between J / Ψ and $\Psi(2 s)$ at relative large dipole size r
- Full non-linear model: non-trivial x-dependence in this region
- Linear model with factorization scale frozen at large dipole size r, there is not much happening \rightarrow constant ratio
- Trivial for GBW model; also seen for BFKL vs BK (QCD low x evolution)
- Prediction depends on VM wave function, but the tendency should be stable

Appendix

potentials for wave functions:

as implemented in [M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664]

Note:

- plots show transition function $\gamma \rightarrow V M$, not wave function
- $\Psi(2 s)$: node structure of wave function absent in transition after integration over photon momentum fraction z
- $\bar{\Sigma}^{(2)}(r)$ enhanced for $\Psi(2 s)$, but still considerable smaller
$\rightarrow \Psi(2 s)$ gives access to a (slightly) different region in r than J / Ψ
\rightarrow requires separate diffractive slopes $B_{D}(W)$ as obtained in
[M. Krelina, J. Nemchik, R. Pasechnik, J. Cepila; 1812.03001; 1901.02664]

$\omega=0.3 \mathrm{GeV} \rightarrow$ Gaussian shape

Buchmüller-Tye Potential: Coulomb-like behavior at small r and a string-like behavior at large r [Buchmüller, Tye; PRD24, 132 (1981)]

how to compare to experiment?

(sort of standard procedure for comparing inclusive gluon to exclusive data)
a) analytic properties of scattering amplitude \rightarrow real part

$$
\begin{array}{cc}
\mathcal{A}^{\gamma p \rightarrow V p}(x, t=0)=\left(i+\tan \frac{\lambda(x) \pi}{2}\right) \cdot \Im \mathrm{m} \mathcal{A}^{\gamma p \rightarrow V p}(x, t=0) & \\
\text { with intercept } & \lambda(x)=\frac{d \ln \Im \mathrm{~m} \mathcal{A}(x, t)}{d \ln 1 / x}
\end{array}
$$

b) differential Xsection at $\mathrm{t}=0$:

$$
\left.\frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}=\frac{1}{16 \pi}\left|\mathcal{A}^{\gamma p \rightarrow V p}\left(W^{2}, t=0\right)\right|^{2}
$$

c) from experiment:

$$
\frac{d \sigma}{d t}(\gamma p \rightarrow V p)=\left.e^{-B_{D}(W) \cdot|t|} \cdot \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0}
$$

$$
\sigma^{\gamma p \rightarrow V p}\left(W^{2}\right)=\left.\frac{1}{B_{D}(W)} \frac{d \sigma}{d t}(\gamma p \rightarrow V p)\right|_{t=0} \quad \text { extracted from data }
$$

weak energy dependence from slope parameter

$$
B_{D}(W)=\left[b_{0}+4 \alpha^{\prime} \ln \frac{W}{W_{0}}\right] \mathrm{GeV}^{-2}
$$

- as expected linear and complete GBW model agree for small dipole sizes
- for large dipole sizes linearized version breaks overshoots complete saturation model

First study (BFKL only, also for Υ)

NLO BFKL describes energy dependence,
but
[Bautista, MH, Fernandez-Tellez;1607.05203]

error band: variation of renormalization scale
\rightarrow in general pretty small = stability

does it mean something?

DGLAP improved saturation model with Gaussian wave function

Ratio

