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|Outline|

• small-x Improved TMD (ITMD) factorization

• Sudakov resummation

• results for dijets at hadron colliders and electron-ion colliders
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|QCD evolution, dilute vs. dense, forward jets|
art by Piotr Kotko

A dilute system carries a few
high-x partons contributing to the
hard scattering.

A dense system carries many
low-x partons.

At high density, gluons are imag-
ined to undergo recombination,
and to saturate.

This is modeled with non-linear
evolution equations, involving
explicit non-vanishing kT .

x
x
x
x
x
x
x

Saturation implies the turnover of the gluon density, stopping
it from growing indefinitely for small x.

Forward jets have large rapidities, and trigger events in which
partons from the nucleus have small x.
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|ITMD Factorization| For forward dijet production
in dilute-dense hadronic collisions

Generalized TMD factorization (Dominguez, Marquet, Xiao, Yuan 2011)

dσAB→X =

∫
dk2T

∫
dxA
∑
i

∫
dxB
∑
b

φ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, µ)

For xA � 1 and PT � kT ∼ Qs (jets almost back-to-back).

TMD gluon distributions φ
(i)
gb(xA, kT , µ) satisfy non-linear evolution equations.

Partonic cross section dσ̂
(i)
gb is on-shell, but depends on color-structure i.

Improved TMD factorization (Kotko, Kutak, Marquet, Petreska, Sapeta, AvH 2015)

dσAB→X =

∫
dk2T

∫
dxA
∑
i

∫
dxB
∑
b

φ
(i)
gb(xA, kT , µ) fb/B(xB, µ)dσ̂

(i)
gb→X(xA, xB, kT , µ)

Originally a model interpolating between High Energy Factorization and Generalized TMD
factorization: PT & kT & Qs.

Partonic cross section dσ̂
(i)
gb is off-shell and depends on color-structure i.

ITMD formalism is obtained from the CGC formalism, by including so-called kinematic
twist corrections (Antinoluk, Boussarie, Kotko 2019).
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|Definition of gluon TMDs|

Resummation of gluon exchanges leads to Wilson line Uγ = Pexp

{
− ig

∫
γ

dz·A(z)
}

acting as a gauge link for the gauge invariant definition of a TMD

Fg/A(x, kT) = 2

∫
d4ξ δ(ξ+)

(2π)3 p+A
exp
{

ixp+Aξ
− − i~kT · ~ξT

} 〈
A
∣∣Tr
{
F̂i+(ξ)Uγ(ξ,0)F̂

i+(0)
}∣∣A〉
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|ITMD Factorization|
Schematic hybrid (non-ITMD) factorization fomula

dσ =
∑

y=g,u,d,...

∫
dx1d

2kT

∫
dx2 dΦg∗y→n 1

fluxgy
Fg(x1, kT , µ) fy(x2, µ)

∑
color

∣∣∣M(color)
g∗y→n

∣∣∣2
ITMD∗ formula: replace color matrix in color sum in terms of partial amplitudes

Fg
∑
color

∣∣∣M(color)
∣∣∣2 = Fg

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗σ CστAτ , Cστ = N
λ(σ,τ)
c

with “TMD-valued color matrix”

(N2
c − 1)

∑
σ∈Sn+2

∑
τ∈Sn+2

A∗σ C̃στ(x, |kT |)Aτ , C̃στ(x, |kT |) = N
λ̄(σ,τ)
c F̃στ(x, |kT |)

where each function F̃στ is one of 10 functions

F(1)
qg , F(2)

qg , F(3)
qg

F(1)
gg , F(2)

gg , F(3)
gg , F(4)

gg , F(5)
gg , F(6)

gg , F(7)
gg

∗This gives the full contribution for 2 jets, and incomplete but manifestly gauge-invariant
contribution for more jets.
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|ITMD∗ factorization for more than 2 jets|

F
(1)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
,
〈
· · ·
〉
= 2

∫
d4ξ δ(ξ+)

(2π)3P+
eik·ξ

〈
P
∣∣∣ · · · ∣∣∣P〉

F
(2)
qg (x, kT ) =

〈
Tr
[
U[�]

]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(3)
qg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[�]U[+]

]〉
F
(1)
gg (x, kT ) =

〈
Tr
[
U[�]†]
Nc

Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉

F
(2)
gg (x, kT ) =

1

Nc

〈
Tr
[
F̂i+ (ξ)U[�]†

]
Tr
[
F̂i+ (0)U[�]

]〉
F
(3)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉
F
(4)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[−]

]〉
F
(5)
gg (x, kT ) =

〈
Tr
[
F̂i+ (ξ)U[�]†U[+]†F̂i+ (0)U[�]U[+]

]〉
F
(6)
gg (x, kT ) =

〈
Tr
[
U[�]

]
Nc

Tr
[
U[�]†]
Nc

Tr
[
F̂i+ (ξ)U[+]†F̂i+ (0)U[+]

]〉

F
(7)
gg (x, kT ) =

〈
Tr
[
U[�]

]
Nc

Tr
[
F̂i+ (ξ)U[�]†U[+]†F̂i+ (0)U[+]

]〉
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|ITMD gluons|

Start with dipole distribution F
(1)
qg (x, kT) =

〈
Tr
[
F̂i+ (ξ)U[−]†F̂i+ (0)U[+]

]〉
evolved via the

BK equation formulated in momentum space supplemented with subleading corrections
and fitted to F2 data (Kutak, Sapeta 2012)

All other distribution appearing in dijet production, F
(2)
qg ,F

(1)
gg ,F

(2)
gg ,F

(6)
gg , in the mean-field

approximation (AvH, Marquet, Kotko, Kutak, Sapeta, Petreska 2016).

This is, at leading order in 1/Nc. In this approximation, the same distributions suffice for
trijets.
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|ITMD gluons| Bury, AvH, Kotko, Kutak 2020

Dependence of F
(1)
qg on kT below 1GeV approximated by power-like fall-off. For higher

values of |kT | it is a solution to the BK equation.

TMDs decrease as 1/|kT | for increasing |kT |, except F
(2)
gg , which decreases faster (even

becomes negative, absolute value shown here).
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|Sudakov resummation for dijets|

S. Sapeta

Having hard jets in the final state, large
logarithms associated with the hard
scale have to be resummed. This re-
summation can be accounted for by in-
clusion of the Sudakov factor.

Within the small-x saturation formalism, Sudakov effects are most conveniently included
in b-space (Mueller, Xiao, Yuan 2013; Staśto, Wei, Xiao, Yuan 2018)

F
ag→cd
g∗/B (x, qT , µ) =

−NcS⊥

2παs

∫
bTdbT

2π
J0(bTqT) e

−Sag→cd
Sud (µ,bT )∇2bTS(x, bT)

where S⊥ is the transverse area of the target, and S(x, bT) the dipole scattering amplitude.
This can be translated into a relation for momentum dependent distributions as

F
ag→cd
g∗/B (x, kT , µ) =

∫
dbT bT J0(bTkT) e

−Sag→cd
Sud (µ,bT )

∫
dk ′T k

′
T J0(bTk

′
T)Fg∗/B(x, k

′
T)
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|Sudakov resummation for dijets|
The Sudakov receives perturbative and non-perturbative contributions for each cannel

Sab→cdSud (µ, bT) =
∑

i=a,b,c,d

Sip(µ, bT) +
∑
i=a,c,d

Sinp(µ, bT)

Perturbative part Mueller, Xiao, Yuan 2013; Staśto, Wei, Xiao, Yuan 2018

Sip(Q,bT) =
αs

2π

∫Q2

µ2b

dµ2

µ2

[
Ai ln

Q2

µ2
− Bi

]
{A,B}qg→qg = {2(CA + CF) , 3CF + 2CAβ0

}
, {A,B}gg→gg = {4CA , 6CAβ0}

µb = 2e
−γE/b∗ , b∗ = bT/

√
1+ b2T/b

2
max , bmax = 0.5GeV−1

Non-perturbative part Sun, Isaacson, Yuan, Yuan 2014; Prokudin, Sun, Yuan 2015

Sinp(Q,bT) = C
i

[
g1b

2
T + g2 ln

Q

Q0

ln
bT

b∗

]
, Cqg→qg = 1+ CA

2CF
, Cgg→gg = 3CA

2CF

g1 = 0.212 , g2 = 0.84 , Q
2
0 = 2.4GeV2

Non-perturbative contribution for small-x gluon already in TMD and omitted here.
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|Effect of Sudakov on TMD| AvH, Kotko, Kutak, Sapeta 2021

99912



|Sudakov resummation for central-forward dijets|
from pp collisions at

√
S = 7TeVAvH, Kotko, Kutak, Sapeta 2021

µF = µR = (pt1 + pt2)/2

The pT distribution describes the data rea-
sonably well. It is a bit closer to the data
for small values of pT if the Sudakov factor
is included.

∆ϕ is the angle between the jets. The
Sudakov factor suppresses the peak at
∆ϕ = π, and makes the distribution
concave.

Calculations performed independently with LxJet (Kotko) and KATIE (AvH).
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|Fgg(3) with Sudakov| AvH, Kotko, Kutak, Sapeta 2021

Within the Gaussian approximation, F
(3)
gg can be obtained from F

(1)
qg via

F(3)
gg (x, kT) =

παs

Nck
2
TS⊥

∫
k2T

dr2T ln
r2T
k2T

∫
d2qT

q2T
F(1)
qg (x, qT)F

(1)
qg (x, rT − qT)

where S⊥ is the target’s transverse area.
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|Dijets in DIS| AvH, Kotko, Kutak, Sapeta 2021

dσeh→e ′+2j+X
=

∫
dx

x

d2kT

π
F(3)
gg (x, kT , µ)

× 1

4xPe ·Ph
dΦ(Pe, k;pe, p1, p2) |Meg∗→e ′+2j|2

ITMD for DIS only requires F
(3)
gg ,

aka the Weizsäcker-Williams density
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|Dijets in DIS| AvH, Kotko, Kutak, Sapeta 2021

dσeh→e ′+2j+X
=

∫
dx

x

d2kT

π
F(3)
gg (x, kT , µ)

× 1

4xPe ·Ph
dΦ(Pe, k;pe, p1, p2) |Meg∗→e ′+2j|2

jet1

jet2

e−

∆ϕ

hadron

transverse plane
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|Dijets in DIS| AvH, Kotko, Kutak, Sapeta 2021

dσeh→e ′+2j+X
=

∫
dx

x

d2kT

π
F(3)
gg (x, kT , µ)

× 1

4xPe ·Ph
dΦ(Pe, k;pe, p1, p2) |Meg∗→e ′+2j|2

∆φ(J1, J2)
Breit frame

∆φ(J1 + J2, e
−)

lab frame

Differences between curves slightly more
pronounced for ∆φ(J1+J2, e

−) in lab frame
than for ∆φ(J1, J2) in Breit frame.
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|Conclusions and outlook|

• small-x Improved TMD factorization allows to consistently include saturation effects
in calculations for forward dijets, both at hadron colliders and electron-ion colliders

• in particular decorrelation-type of observables are sensitive to saturation effects

• inclusion of Sudakov resummation also has a sizable effect such observables

• we so far included both effects for DIS

• we plan to include the Sudakov resummation in all TMDs necessary for dijets at hadron
colliders within ITMD factorization
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|Augmented TMD evolution| Kwieciński, Martin, Staśto 1997

Kwieciński, Kutak 2003

φ(x, k2) = φ(0)(x, k2)

+
αs(k

2)Nc

π

∫ 1
x

dz

z

∫∞
k20

dl2

l2

{
l2φ(x

z
, l2)θ(k

2

z
− l2) − k2φ(x

z
, k2)

|l2 − k2|
+
k2φ(x

z
, k2))√

|4l4 + k4|

}

+
αs(k

2)

2πk2

∫ 1
x

dz

(
Pgg(z) −

2Nc

z

) ∫ k2
k20

dl2φ

(
x

z
, l2
)
+
αs(k

2)

2π

∫ 1
x

dzPgq(z)Σ

(
x

z
, k2
)

−
2α2s(k

2)

R2

[( ∫∞
k2

dl2

l2
φ(x, l2)

)2
+ φ(x, k2)

∫∞
k2

dl2

l2
ln

(
l2

k2

)
φ(x, l2)

]

linear BFKL with kinematic constraint

non-linear term from triple-pomeron vertex, with RA = RA1/3

DGLAP corrections
Kutak, Sapeta 2012:

Starting distribution φ(0)(x, k2) =
αs(k

2)

2πk2

∫ 1
x

dzPgg(z)
x

z
g
(x
z

)
, xg(x) = N(1−x)β(1−Dx)

fitted to combined HERA F2 data, and with φ(x, k2 < 1) = k2φ(x, 1).
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