
Cluster-Level Logging with 
Kubernetes

Jonathan Hancock



Motivation

▪ Logging is an important part of any CCM system, allowing for 

easier debugging of problems, and monitoring of applications.

▪ It makes sense for logging to be separate from the lifecycle of 

pods and nodes: if a node dies suddenly, we wouldn’t want its 

logs to be lost with it.

▪ Kubernetes does not natively support external logging, but it can 

be implemented without excessive effort.



The default setup

▪ When the container writes to stdout or stderr, the container 

engine redirects the output.

▪ For example, docker will write it to a log file in the JSON format.

▪ Kubernetes clusters use the 

logrotate tool to delete the logs

every hour.

▪ All the features mentioned can of

course be customised.



Node-level logging agent

▪ We can upgrade to cluster-level logging by adding a logging agent pod 

to each node.

▪ A logging agent is an application that can read all logs in the node, and 

push or expose them to a backend.

▪ A DaemonSet is used to ensure all nodes

run a copy of this pod.



Sidecar application

▪ The system can be improved by adding a “sidecar” container to pods 

that produce logs.

▪ This container reads the logs from the application, then writes them 

to stdout/stderror itself.

▪ This allows for more processing of the

application logs, such as separating logs 

from different parts of it, or using formats that

cannot be written directly to stdout.



Sidecar application (cont.)

▪ Sometimes the node-level logging agent is not flexible enough.

▪ In this case, we can make sidecar containers that function as 

logging agents, and communicate directly with the backend.

▪ This can be resource intensive, so shouldn’t be the default 

implementation.



Citations

▪ All diagrams from https://kubernetes.io


