Simulations of Silicon Radiation Detectors for HEP

Benjamin Nachman (editor),¹ Timo Peltola (editor),² and addyourself

¹Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: bpnachman@lbl.gov

Abstract: TBD

Submitted to the Proceedings of the US Community Study on the Future of Particle Physics (Snowmass 2021)

Contents

1	Introduction		2
2	Existing Tools		2
	2.1	Models for Single Quantities	2
		2.1.1 Straggling	2
		2.1.2 Annealing	2
	2.2	TCAD Simulations for Detector Properties	2
	2.3	Testbeam	2
	2.4	Full detector systems	2
3	3 Challenges and Needs		2

1 Introduction

Should reference the recent Yellow Report [1].

2 Existing Tools

2.1 Models for Single Quantities

2.1.1 Straggling

2.1.2 Annealing

2.2 TCAD Simulations for Detector Properties

Many multitrap models for radiation damage and lighter-weight alternatives (TRACS and Weightfield2)

2.3 Testbeam

Pixelav, Allpix², ...

2.4 Full detector systems

ATLAS approach (modified digitization), CMS approach (efficiency corrections), LHCb approach (tuned charged transport)

3 Challenges and Needs

- Unified radiation damage (TCAD) and annealing model
- Prescription for uncertainties in TCAD models
- Measurements of damage factors (many of the inputs in the RD50 database are based on simulation or less)
- Update to basic silicon properties? https://cds.cern.ch/record/2629889
- How to deal with proprietary software and device properties?
- Feedback between full detector systems and per-sensor models
- Extreme fluences of future colliders

Acknowledgments

BN was supported by the Department of Energy, Office of Science under contract number DE-AC02-05CH11231.

References

 I. Dawson, Radiation effects in the LHC experiments: Impact on detector performance and operation. CERN Yellow Reports: Monographs. CERN, Geneva, 2021, 10.23731/CYRM-2021-001.