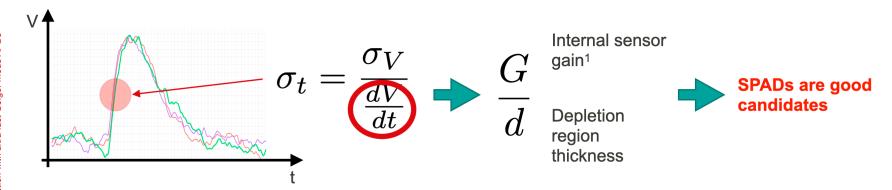




## **EPFL** Outline

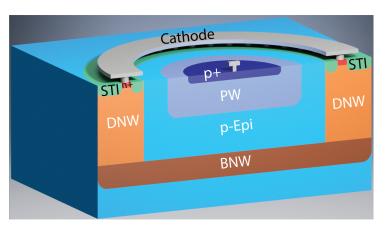

- Introduction
- Measurements
- Conclusions and future work

**EPFL** 

## Introduction

## Timing with Geiger-mode APDs (SPADs)

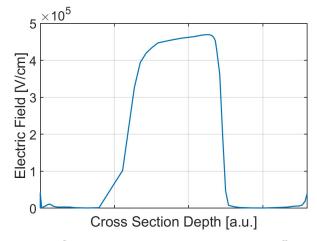
If we read-out the signal of the sensor on an ideal transimpedence amplifier of gain 1




#### The avalanche growth dynamic represents the main contribution to the intrinsic SPAD timing resolution and this is at the picosecond scale<sup>2</sup>

<sup>1</sup>N. Cartiglia, M. Baselga, G. Dellacasa, S. Ely, V. Fadeyev, Z. Galloway, S. Garbolino, F. Marchetto, S. Martoiu, G. Mazza, et al., Performance of ultra-fast silicon detectors, Journal of instrumentation 9, C02001 (2014).

<sup>2</sup> W. Riegler, P. Windischhofer, P. Time Resolution and Efficiency of SPADs and SiPMs for Photons and Charged Particles. *Nucl* Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2021)


## **SPAD** structure

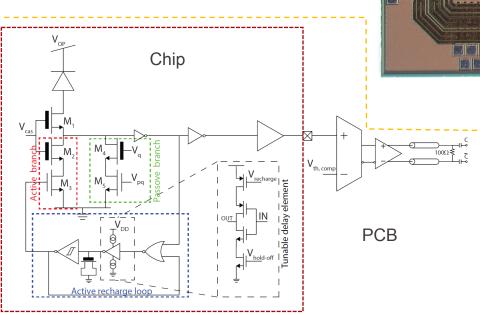


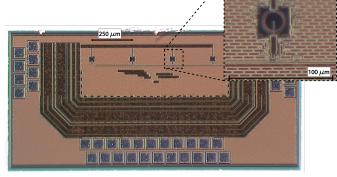
# PW DNW BNW

#### SPAD

- 180 nm CMOS technology
- P-I-N structure
- Substrate-Isolated type
- P-well anode, buried N-well cathode
- HV provided through a deep N-well




F. Gramuglia, et al., "A low-noise CMOS SPAD pixel with 12.1 ps SPTR and 3 ns dead time", IEEE JSTQE, 2021. 2021


Photon and minimum ionizing particle detection with ultra fast Geiger mode APDs

#### **EPFL**

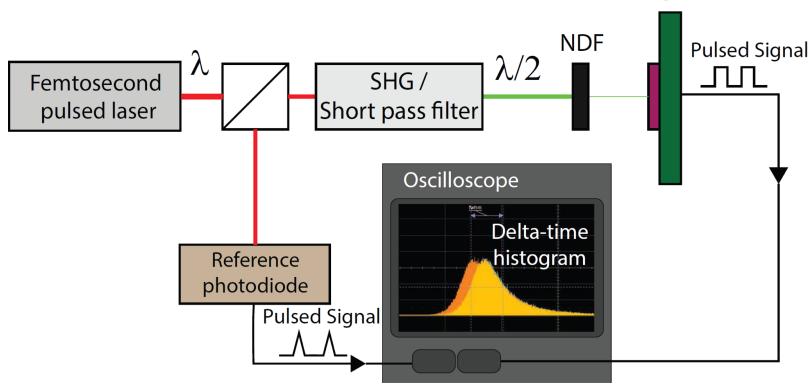
#### Chip structure and read-out PCB





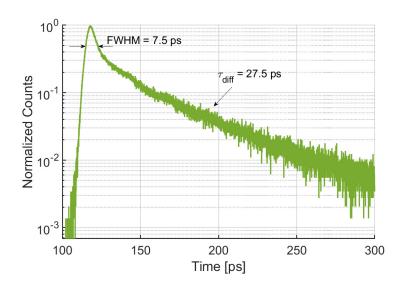


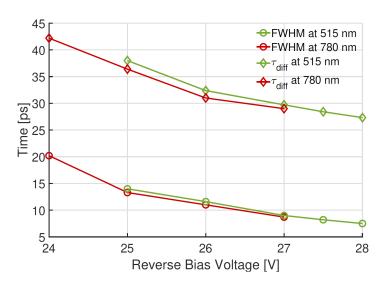
#### Chip


- 25 µm diameter CMOS SPAD
- Active quenching/recharge
- Tunable delay time (down to 3 ns)

#### System-on-board:

- Single external power supply source
- All voltages provided through DACs controlled with serial protocol
- Reduced cable noise
- Si-Ge comparator for 50 Ohm coupling
- High signal slew rate (≥ 1.6 V/ns)


## Measurements

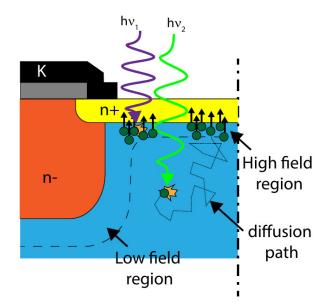

## **Optical Setup**





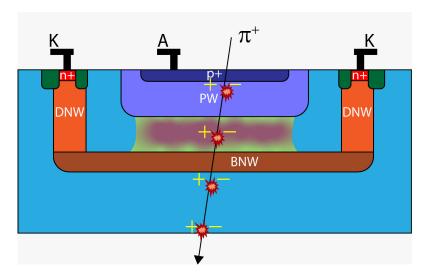
#### **Optical measurements**






- Jitter of 7.5 ps FWHM at 6.5 Vex for green light
- Jitter of 8.5 ps FWHM at 5.5 Vex for red light

#### **EPFL**

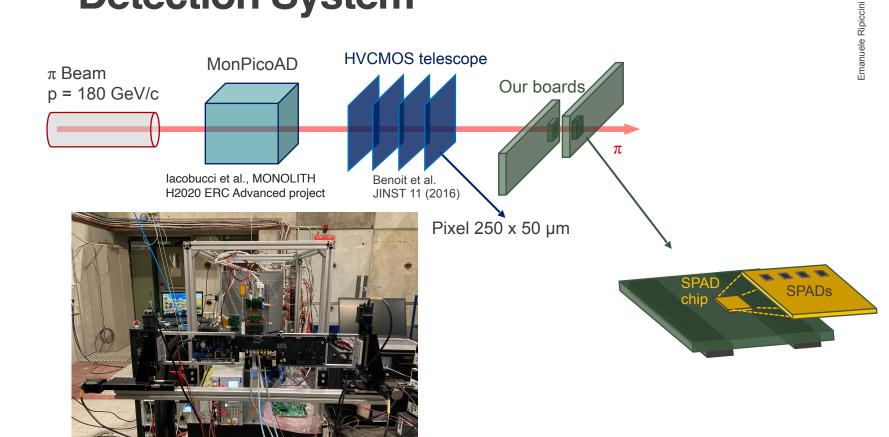

#### MIP vs photon detection

#### **Photons**



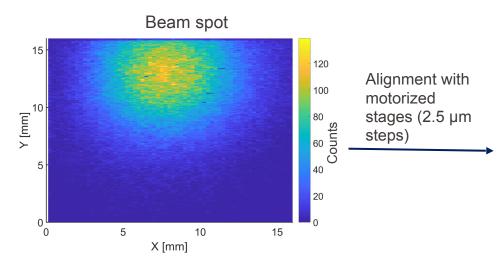
One photon absorption: one e/h pair generated

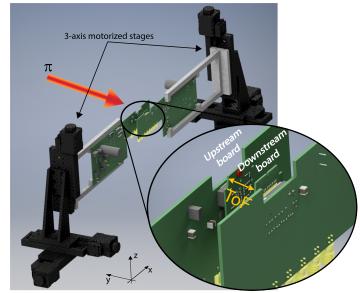
#### MIP




MIP is **not** absorbed: several interactions can occur, more pairs are generated

MIP mean free path in Si: 200 nm

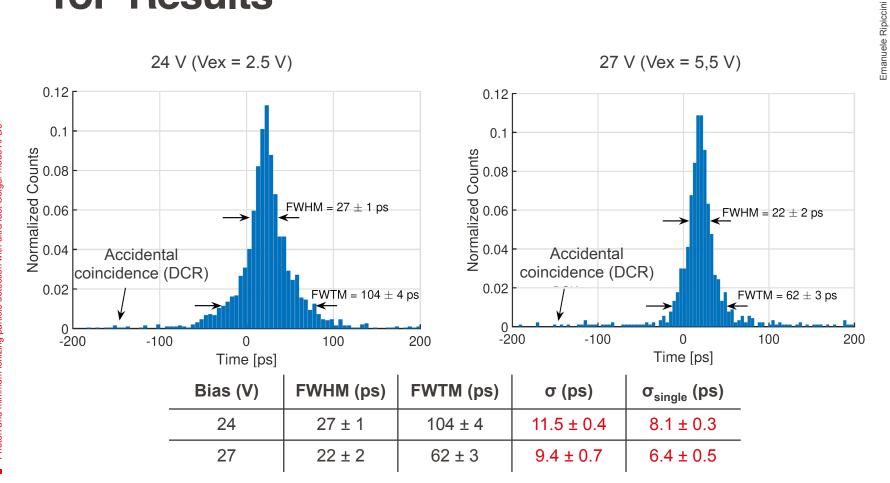




## **Detection System**



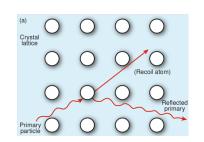


## **Device alignment**





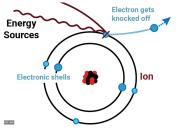

#### Alignment procedure:


- Upstream SPAD is aligned with the most illuminated pixel of one of the central telescope planes by using the SPAD itself as trigger
- Downstream SPAD is aligned with the most illuminated pixel of one of the central telescope planes by using the SPAD itself as trigger
- The downstream SPAD is moved at steps of 5 µm until the position that maximizes the coincidence rate is reached

## **ToF Results**



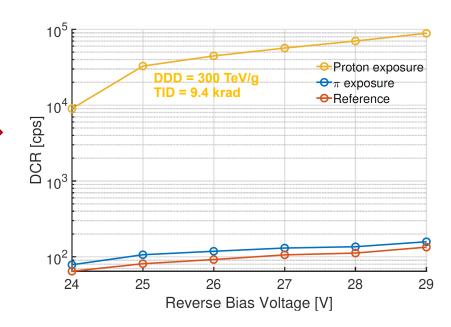
# MIP detection with SPAD


#### **EPFL** Radiation hardness



Displacement damage




Maurer, Richard et al. (2008).



Ionisation damage (necessary for detection!)



Collection of the free charges by the electric field



- 100 MeV proton exposure (heavy ionisation)
- 180 GeV/c pions exposure (MIP)

## **State of the art**

Emanuele Ripiccini

| Device      | σ <sub>single</sub> (ps) | Time walk correction | Pre-amplifier | MIP Detection efficiency |
|-------------|--------------------------|----------------------|---------------|--------------------------|
| SPAD AQUA   | 6.4                      | No                   | No            | ³ <b>~99</b> %           |
| TIMESPOT    | <sup>1</sup> 19          | Yes                  | Yes           | 99%                      |
| UFSD (LGAD) | <sup>2</sup> 27          | Yes                  | Yes           | 99%                      |

- <sup>1</sup>D. Brundu et al., Accurate modelling of 3D-trench silicon sensor with enhanced timing performance and comparison with test beam measurements, JINST 16 (2021) 09, P09028
- <sup>2</sup>N. Cartiglia et al. Beam Test Results of a 16 ps Timing System Based on Ultra-fast Silicon Detectors. Nucl Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2017) 850:83–8.
- <sup>3</sup> W. Riegler, P. Windischhofer, P. Time Resolution and Efficiency of SPADs and SiPMs for Photons and Charged Particles. *Nucl* Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2021)

## Conclusions and future work

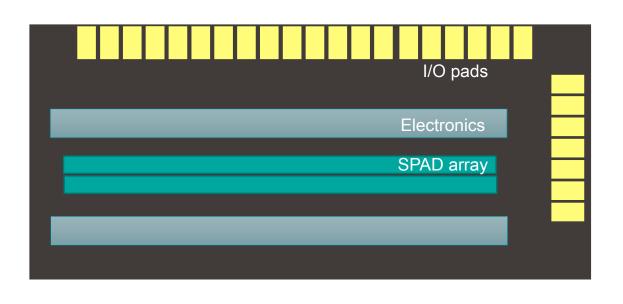
## **EPFL** Conclusions

An optimized CMOS SPAD chip has been developed, showing outstanding performance:

- Tunable dead time down to 3 ns
- High timing resolution for green light: 7.5 ps FWHM
- These SPADs can detect MIP with unprecedented timing resolution (6.4 ps gaussian sigma)
- Preliminary radiation hardness results show that the performances are not affected

## **Future work**

#### Next steps


- MIP Detection efficiency measurements (Oct 2022)
- Design of a multichannel prototype
- Feasibility study for the implementation of high timing resolution particle tracker for particle beam facilities:
  - Monolithic chip with two rows of N SPADs (like the one presented, possibly in 55 nm) each
  - Electronics on the periphery
  - Facing SPADs in coincidence to suppress the DCR
  - Cooling system

#### EPFL

#### **Future work**

Chips glued on the front-side with flip chip machine: 1 µm precision

Photon and minimum ionizing particle detection with ultra fast Geiger mode APDs







#### Thank you!



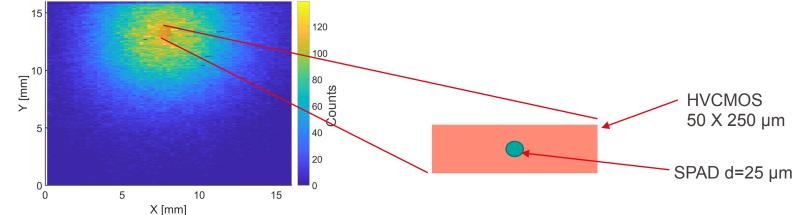
1

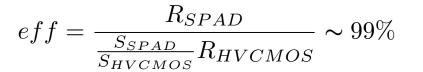
## **Sub-10 ps Minimum Ionizing Particle Detection** with Geiger-Mode APDs

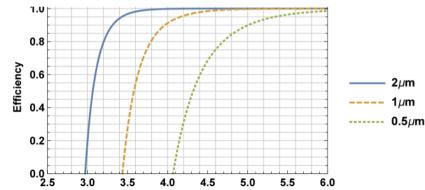
Francesco Gramuglia  $^{1,*}$ , Emanuele Ripiccini  $^{1,*}$ , Carlo Alberto Fenoglio  $^{1}$ , Ming-Lo Wu  $^{1}$ , Lorenzo Paolozzi  $^{2,3}$ , Claudio Bruschini  $^{1,\dagger}$ and Edoardo Charbon  $^{1,\dagger}$ 

- <sup>1</sup> Advanced Quantum Architecture Laboratory, Ecole polytechnique fédérale de Lausanne (EPFL), Neuchatel, Switzerland
- <sup>2</sup> Departement de Physique nucléaire et corpusculaire, Université de Genève, Geneva, Switzerland
- <sup>3</sup>European Organization for Nuclear Research, CERN, Meyrin, Switzerland

Correspondence\*: Francesco Gramuglia francesco.gramuglia@epfl.ch


#### 2 ABSTRACT

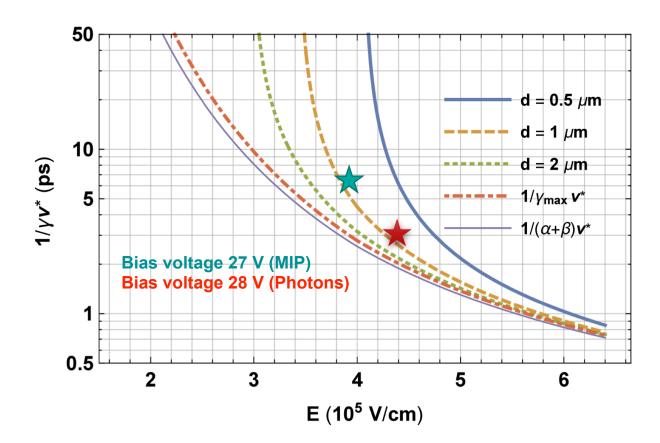

- Major advances in silicon pixel detectors, with outstanding timing performance, have recently
- 4 attracted significant attention in the community. In this work we present and discuss the use of
- 5 state-of-the-art Geiger-mode APDs, also known as single-photon avalanche diodes (SPADs),
- 6 for the detection of minimum ionizing particles (MIPs) with best-in-class timing resolution. The
- SPADs were implemented in standard CMOS technology and integrated with on-chip quenching
- 8 and recharge circuitry. Two devices in coincidence allowed to measure the time-of-flight of 180
- GeV/c momentum pions with a coincidence time resolution of 22 ps FWHM (9.4 ps Gaussian
- sigma). Radiation hardness measurements, also presented here, highlight the suitability of this
- 11 family of devices for a wide range of high energy physics (HEP) applications.


## Backup

## **EFFL** Efficiency calculation







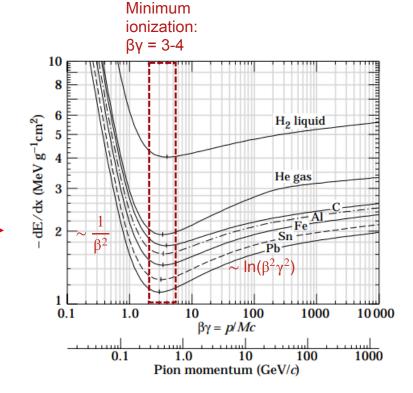



E (10<sup>5</sup> V/cm)



#### Time resolution with SPADs



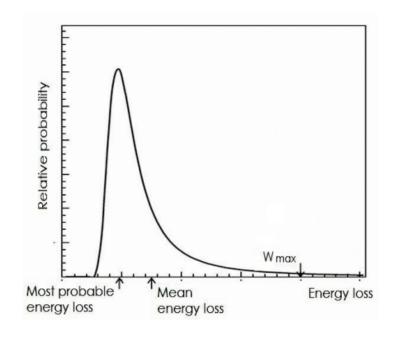

## **EPFL** Minimum Ionizing **Particles**

#### **Bethe-Bloch equation:**

mean energy loss by relativistic charged particles "stopping power")

$$- < \frac{dE}{dx} > \sim \frac{1}{\beta^2} \cdot \ln(\text{const} \cdot \beta^2 \gamma^2)$$

$$\beta = v/c$$
 (velocity)  
 $\gamma = (1 - \beta^2)^{-1/2}$  (Lorentz factor)




Groom, D.E., Klein, S.R. Eur. Phys. J. C 15, 163-173 (2000).



# Minimum Ionizing Particles

- Number of interaction fluctuates according to the Poisson law
- Energy-loss distribution of MIP in thin absorber (< hundreds of um) follows a Landau distribution →</li>
   Straggling function
- Large energy losses in single interaction is less likely
- Most probable value (MPV) and the sigma of the function are the main parameters



The Landau distribution of the signal introduces a timing jitter that is not negligible at the picosecond scale for a proportional pixel detector