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A brief History of ASIC desigh @ UH
. Didn’t exist until founding of the ID Lab (circa 2000)

. Had done much board and system-level design, starting with
CP-LEAR and GEM @SSC (worked with many ASIC designers)

. After stint in silicon valley, where did ASIC design for start-up
company, was contacted with an interesting problem

. Peter Gorham was at JPL (knew each other from DUMAND
days) and wondered if could build a low-power transient
digitizer for VHF/UHF signals, which would be enabling for
radio neutrino detection



Since then, a world-wide impact
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ASICs as enabling tools to the Big Questions
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1. CP violation (how get more matter than anti-
matter, but not too much)

2. Does CP violation also occur in leptons (and 3-
generation problem) ?

3. Origin of highest energy cosmic rays and their
neutrino fingerprint?

4. What is the nature and origin of Dark Matter ?
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ANITA: LABRADOR3
Flown all 4 ANITA flights. LAB4D developed for ANITAS

ANITA Flight Path
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Further exploration directions?

Limits of timing resolution (RF-Pix = <1ps time resolution)

Channel density
Processing/feature extraction on chip (digital synthesis)

Timing calibration




RNO-G: LAB4D

LAB4D explored removing “dT” non-uniformity
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side view
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lceRadio Sampler

ARA

Explore how deep (reasonably) can go

f EQ:
Jr\ Detection of ultrahigh-energy neutrinos in ARA

\"

Wi

-SCoft

Amundsen
South Pole Station

ARA station

th SCA architecture
Force single-station tr

i
W

|— “Fimi {50'm)

200m

igger and

Interaction Vertex

large A add

y
Cable runs
Power Hubs

coherent|

ARA37

small A add
destructively

3

A

=
=
® ®

transmitter

@

o
[
]

®

i

c
2 ®
b
: s —
@ ] 3
m R.M # == ,MH
s BE W Yl C T
= .m.m %
b o . H— — Mm
£ U
_— [ ——
&
£
b 23
W
58
3=
LR N SSESsEsE=sssE==s

ions offl

64 x 512 (32k per ch.

‘1.28.(.2:&_._.@__”__”

64) separate transfer

lanes

| Sa_mi)ling.

coherently phase stat
+ Storage
o Wilkir

I N R 000 00 A



Sample Timing Generator
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CTA: TARGET

 Less depth, slower sampling speed, higher channel density
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CTA: CT5TEA

 Low threshold, analog sum triggering (companion ASIC)
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e Sum of 4 inputs achieves this
 Provides DC offset to TARGET sampler
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CTC (sampler)
CT5TEA (trigger)
Gang Liu

Cherenkov Telescope Array
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Belle Il iTOP and KLM: IRSX, TARGETX

Leveraged decade of development for PID and Muon readout

®
_ Direct difference
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> IRSX 8-channels, 32k samples/channel
» 8k channels of MCP-PMT readout
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» TARGETX 16-channels, 16k samples/channel
» 23k channels of Si-PMT readout

> $1.40/channel
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APT: ALPHA

 Lower power, higher density readout (ganging readout/FPGA)

dvanced " article-astrophysics ' elescope

* Triggering seems fine

et

 “hang” more digitizers
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Figure 1: Top: APT in Falcon-9 faring. Bottom: APT
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* No central front-end
trigger

Baseline design: 380,000 channels
(needs to be low power — happy with
TARGETC + T5TEA functionality)
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ALPHA Readout Concept

ATA (CTSTEA) Trigger output

Analog 216 ’i‘T’_‘r o
Use existing Cherenkov Telescope Array trigger ASIC (tweaked to have an > Vpifl et
analog sum-of-16 trigger) and operate digitization of each ALPHA 1o Gnels
independently.

One ATA for one ALPHA

Maximize the number of ALPHA served by a single FPGA (power, 1/0 limits)
In theory, 64 chains * 32 ALPHA * 16 channels ~ 2715 channels/FPGA

16 16 16 16 16 16 16

CT5TEA CT5TEA CTSTEA CTS5TEA CT5TEA CTS5TEA CTSTEA CT5TEA
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ALPHA ALPHA ALPHA ALPHA ALPHA

LVDS_A

LVDS_B

To save power we should only use and power one of these, so it does mean
we want the ability to power-down the LVDS transmitters.




GULFstream Overview (iTOP motivation)

e Much more compact, lower power

e No long storage depth — digitize and ship all hits

e GULFstream Features

Y
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32 channels
4x deep, 64 sample SCA
4x Gbps data links (8ch/link)

32 bit words (3 chan, coarse/fine time)
Hit streaming: 3.2 Mhits/s/chan
Each channel operates independently

~100ns/6-bit conversion
Direct feature extraction
No pedestal acquisition

To user, looks like a TDC

Low power/channel
(exact savings to be confirmed)
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Laser on -- no trigger

GULFstream Operating Principle -
* For MCPs, charge distribution goes all the way to zero =T
e For SiPMs, quantized; Time to Digital Converter methodology makes sense M"“‘M MCP-PMT
e SCA sampling at ~ 4GSa/s; trigger on stored samples; priority encoder time bin Wm | | |
e Target interpolation: 1ns risetime, 0.5V, 64 bit sampling I I AN o
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[Ta=25 °C, FWHM, using LFS (4.14 x 4.14 x 20" mm)]
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Entries : 1000000

| Gonstani 2_425%005_)1370'03.“00.2.......:...........:. e
Mean . 7.334 £ 0.016
Sigma : 16. 433+ 0.01
'Methodologvfrom

J-F Genat, G.. Varner, F. Tang, H. FIISCh
NIM A607 (2009) 387-393.

60 100
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180ps FWHM ~ 76ps
If 20ps due to ASIC (FTSW limited?)

76ps =» 79ps
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A summary of ASIC desigh @ UH

High impact from a tiny group; physically the most isolated in
the world

Didn’t mention all of the endeavors (such as Q-Pix, GRAPH, ...)
¢ (nor any CAP (MAPS) pixel activities)

Students and Postdocs have made a huge impact

The latter also realized the goal of commercializing the
technology (Nalu Scientific)

Opportunities: we expect to be recruiting for an
Instrumentation Frontier faculty position soon
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4-Deep Bank Buffering

» Single bank suffers too large hit loss

<1% @ 3MHz

Buff depth Dependence

== Hitloss m 2-huff J-buff == 4-buff
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