Refining VLENF SuperBIND (?) Cuts Analysis

R. Bayes

¹School of Physics and Astronomy University of Glasgow

February 10, 2012

R.Bayes (University of Glasgow)

VLENF Cuts

February 10, 2012 1 / 18

э.

Fundamental Quality Cuts

- Fiducial: The event vertex occurs before last meter of detector.
- Max Momentum: P_μ should be less than the beam momentum, but should take resolution into account.
- Fitted Proportion: Number of hits fit must be greater than 60% of hits identified as part of the track.

Event Selection Cuts

- Track Quality: Likelihood comparison between PDFs of statistical uncertainty of track.
- Displacement: backgrounds identified using event topology
- Quadratic Fit: Fit of track as function of radius to determine the charge.
- CC Selection: Likelihood comparison of PDFs of number of hits in track.

• Kinematic: isolates background based on $Q_t = P_{\mu} \sin \theta_{\mu\nu}$, P_{μ} and E_{rec} .

List of Cuts

Cut Name	25 GeV Cut	2 GeV Cut	Explanation
Fiducial	<i>z</i> 1 ≤ 18000 mm	<i>z</i> 1 ≤ 9000 m	20 m Detector
Max Momentum	$P_{\mu} <$ 40 GeV	P_{μ} $<$ 3.2 GeV	ν momentum
Fitted Proportion	$N_{fit}/N_h \ge 0.6$	$N_{\it fit}/N_h \ge 0.6$	No Change
Track Quality	$\mathcal{L}_{q/p} < -0.5$	$\mathcal{L}_{q/ ho} < 0$	By Inspection
Displacement	$\frac{dispR}{dispZ} > 0.18$	$\frac{dispR}{dispZ} > 0.75$	By Inspection
	-0.0026 <i>N</i> _h ,	$-0.026N_h$,	
	<i>dispZ</i> > 6000 mm	<i>dispZ</i> > 400 mm	By Inspection
	or ${\it P}_{\mu} \leq$ 3 ${\it dispZ}$		
Quadratic Fit	$qp_{par} < -1.0$ or	$qp_{par} < -1.0$ or	Radial Curve
	$qp_{par} > 0.0$	$qp_{par} > 0.0$	
CC Selection	$\mathcal{L}_1 > 1.0$	$\mathcal{L}_1 > 2.0$	By Inspection
Kinematic	$E_{rec} \leq$ 5 GeV or	$E_{rec} \leq 1 \text{ GeV or}$	By Inspection
	$Q_t > 0.25,$	$Q_t > 0.025,$	
	$E_{rec} \leq$ 7 GeV or	$E_{rec} \leq 0.1 \text{ GeV or}$	
	$P_{\mu} > 0.3 E_{\it rec}$	$P_{\mu} > 0.3 E_{rec}$	

500

◆□ > ◆□ > ◆□ > ◆□ > □

Consideration of Fundamental Quality Cuts

• Fiducial and Max Momentum cuts are fixed.

- Mean proportion of hits used in track fit decreases in charge mis-ID.
- Increase to 0.8 from 0.6 helps optimization of Signal to Background.

< A >

Track Quality

- Suggest two different classes of events contributing to signal distributions.
- Derived from event classification in

Distribution of likelihood ratios

R.Bayes (University of Glasgow)

February 10, 2012 6 / 18

Events below and left of line cut from analysis.

★ E ► < E</p>

Image: A mathematical states in the second states in the second

Reconstructed Momentum versus Longitudinal Displacement

Events to left of line removed

イロト イポト イヨト イヨ

- Very little variation between sources.
- Purpose is to identify charge mis-ID
- Changing limits does not add anything to analysis.

Charge current selection uses the distribution of hits in trajectory in a log likelihood selection algorithm i.e. $L_1 = \log(l_{bit}^{CC}/l_{bit}^{NC})$.

- Strongly momentum dependent. Dictated by muon range.
- Mean and Variation in Energy Deposition also available.

Kinematic Cuts: Reconstructed Momentum and Energy

- Events below line removed
- Does nothing to improve purity.

Kinematic Cuts: Reconstructed Energy and Q_t

- Events below line removed
- Only removes signal events.

Changing Cuts

Optimizing the Signal/Background

- Use the likelihood cuts on track quality and CC Selection
- All other cuts fixed to values shown in above table.

Cut C	Quantities	Target Species			
		$ar{ u}_{\mu}$		$ u_{\mu} $	
L_1	$L_{q/p}$	Eff	S/B	Eff	S/B
2.0	-0.5	0.44	280	0.26	180
4.0	-0.5	0.40	1286	—	
5.0	0.0	0.31	2680	0.11	269
5.0	0.5	0.20	3331	0.068	267

Conclusion

It is possible to maximize the signal to background ratio, at the expense of signal rate, for particles focused by the magnetic field.

- "Removal" of Kinematic cuts will improve signal strength
 - All limits are set to zero.
- Raising limit on "Fit proportion" will help ratio of Signal over background
 - Charge mis-ID background is relatively constant up to 0.8

글 🕨 🖌 글

A D M A A A M M

Performance After Changed Cuts

- Includes adjustments to Fitprop and Kinematic Cuts.
- Factor of \sim 4630 background suppression for $\bar{\nu}_{\mu}$.
- Factor of \sim 311 background suppression for ν_{μ} .

Source and Selected Spectra

- Generated $\bar{\nu}_{\mu}$ CC spectrum in black
- Selected $\bar{\nu}_{\mu}$ CC spectrum in red

イロト イポト イヨト イヨ

Event Survival Fractions						
Species	Event Fraction					
$\bar{\nu}_{\mu}$ CC	0.2058					
ν_{μ} CC ID as $\bar{\nu}_{\mu}$	4.44×10 ⁻⁵					
$ar{ u}_{\mu}\;NC$	7.66×10 ⁻⁶					
ν_{μ} CC	0.07289					
$ar{ u}_{\mu}$ CC ld as $ u_{\mu}$	2.34×10 ⁻⁴					
$\nu_{\mu} NC$	$4.5 imes 10^{-6}$					

Focused backgrounds at is part in 10⁵.

Targets (copied from Paul)

- Want 20 $\bar{\nu}_{\mu}$ events with \sim 0.5 background events
- Assume
 - \sim 20000 u_{μ}
 - $\sim 20000 \bar{
 u}_e$
 - Oscillation Probability $P\sim 10^{-3}
 ightarrow 20 ar{
 u}_{\mu}$
- mis-id rate $= \frac{0.5}{20000} = 0.25 \times 10^{-4}.$
- This is half the current background rate
- If this is as good as we can do then longer run times will be required.

- Three of seven cuts have the influence to produce required charge selection
 - Fit Proportion
 - Track Quality Likelihood Selection
 - Charge Current likelihood Selection
- Kinematic cuts are redundant in VLENF analysis.
- If we are stuck with current analysis then need longer running time.
- Analysis is not complete.
 - There must be some unexplored reconstruction improvements.
 - Have not used all available information in analysis.