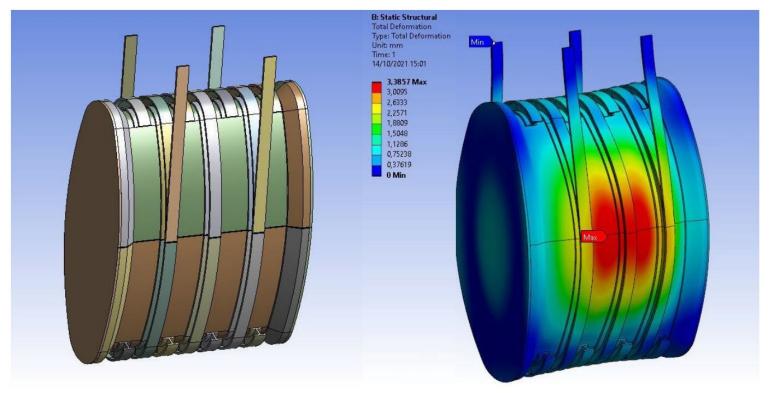
GRAIN: optical readout with Hadamard masks

Dic 21, 2021 Alessandro Montanari

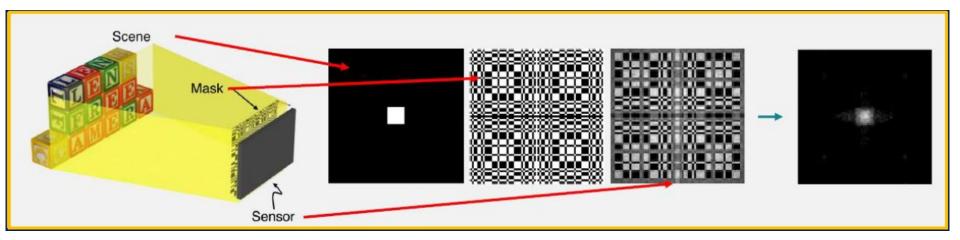

OUTLINE

Not major updates since last presentation on 30 Nov 2021

- Mechanics detailed simulation in progress
- **Optics** for VUV scintillation light:
 - coded aperture (Hadamard masks)
 - 3D voxels recontruction
- Cryogenic readout electronics

GRAIN structural analysis

Detailed studies being carried out by a certification engineering company to be fully compliant with US rules: **first preliminary results under evaluation.**



Press = 3 bars

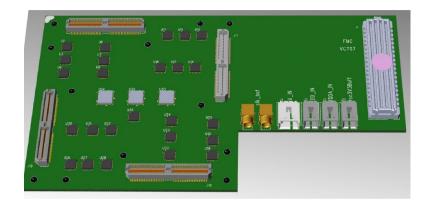
Coded aperture optics

Principle of coded aperture technique: many pinholes arranged so that the resulting light pattern can be reconstructed to the original image.

It is a non focusing device, which trasmits 50% of the light

Coded aperture: simulation

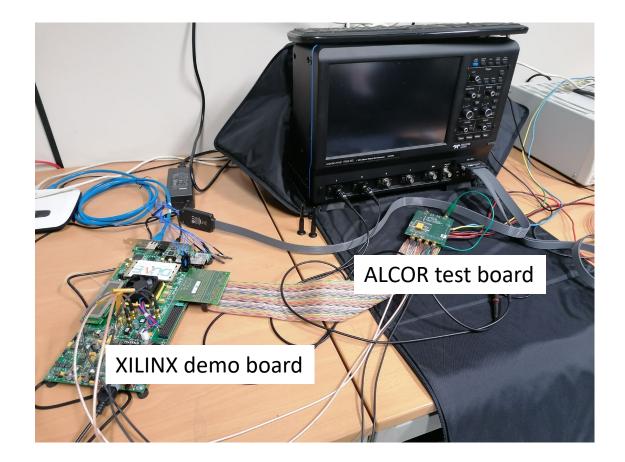
- A full simulation chain has been setup: from physics events to GEANT4 simulation of particles in LAr, light emission and propagation, model of SiPM matrix response, front-end electronics
- A lot of work done to build a versatile simulation suite able to reproduce different geometries and sensor+masks configurations simply by changing some parameters
- Run on a HPC facility based on GPUs (courtesy D.Cesini-CNAF)
- Image reconstruction in very advanced status with two appraches under study:
 - 2D reconstruction based on mathematical algorythms (3D obtained by combining 2D projections). Masks geometries follow well defined rules.
 - 3D combinatorial approach: volume divided in voxels and light sources propagate to the sensor and filter by holes in mask.


Roadmap

- Build a hardware prototype ("Cold Demonstrator") to validate the technique and using presently available sensors and electronics:
 - Liquid Nitrogen (Argon) working condition
 - Low power consumption and minimal number of cables
 - Cold electronics based on dedicated ASIC ("Alcor" from INFN-Torino, cryogenic, 32 ch)
 - Commercial matrices of SiPMs (16x16 rank, 3x3 mm² SiPM, 256 ch)
- Test demonstrator in Liquid Argon (cryostat in Genova)
- Validate simulation with Cold demonstrator
- Fully simulate GRAIN optical readout with N cameras with 32x32 matrices): test different configurations to find best compromise (cost, power, performance) for track reconstruction

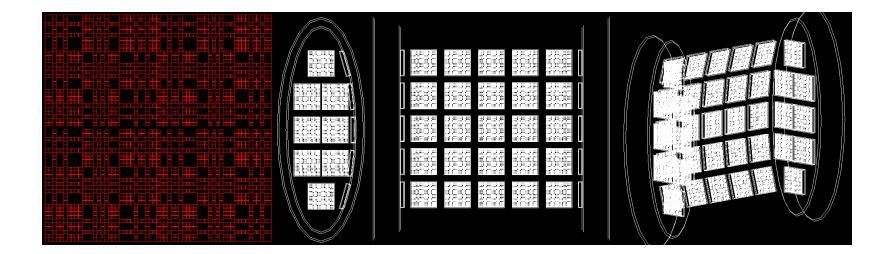
Cold demonstrator hardware

 Mezzanine board with sensor mounted on a motherboard with 8 ASIC for a total of 256 channels



- Project submitted to external firm for layout of motherboard, pcb production and component mounting. Three complete cameras with available ASICs. Deliver expected end of January 2022.
- Readout with commercial Xilinx demo board

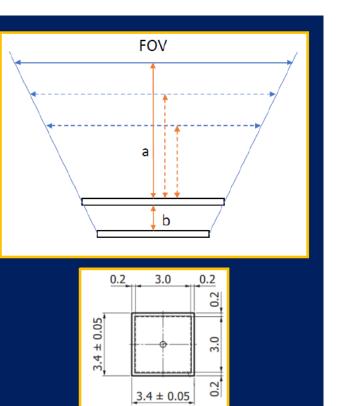
Preliminary test with ALCOR


• Firmware for control and DAQ for AISC is under development

Simulation of advanced cameras

8 cameras on each lateral face 25 cameras on each curved face 32x32 sensor matrix with 3.2x3.2 mm² SiPMs (102.4 x 102.4 mm²) 61x61 mask with 2.71x2.71 mm² holes (177.6 x 177.6 mm², including an extra border)

Cameras on one curved faces are omitted in the pictures. Image reconstruction can be tested also with a reduced set of cameras.

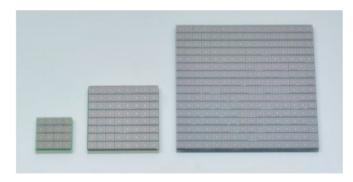


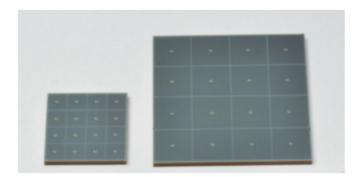
BACKUP SLIDES

Coded aperture :16x16 demonstrator

A simulation of the hardware of a first prototype camera (see later) was setup.

- Matrix SiPM Rank: 16
- Mask Rank: 17
- Mask Pitch: 3.15 mm
- Sensor Pitch: 3.4 mm
 - active area 3.0 mm
- Mask to Sensor Distance: b = 2.0 cm
- Focal Plane: a = 25 cm
- SiPM Efficiency: hypothesized 25%


Back End FPGA


Commercial, choice dictated by ALCOR connectivity

- Each ASIC requires 12 LVDS pairs, of which 6 @ 320 MHz / 640 Mbps DDR
- Could go slower, but cannot decouple TDC clock from I/O clock
 - Some slow pairs can be buffered
 - Some testing was needed to select LVDS buffer working in cryo conditions
- Still around 70 pairs => Requires full HPC FMC
- Very few boards have this fully routed
- Selected Xilinx VC 707, somewhat old but quite power
 - Use commercial Twinax FMC extension cable for better integrity

SiPM matrices from Hamamatsu

One 16x16 S13615-1050N-16

Cell pitch 50 um, pixel area 1 mm² Active area 256 mm², total area 368 mm²

Four 8x8 S14161-3050HS-08

Cell pitch 50 um, pixel area 9 mm² Active area 2304 mm², total area 2641 mm²

Other options exist in Hamamatsu catalogue, with pixel area up to 36 mm²

Outlook: GRAIN scalability

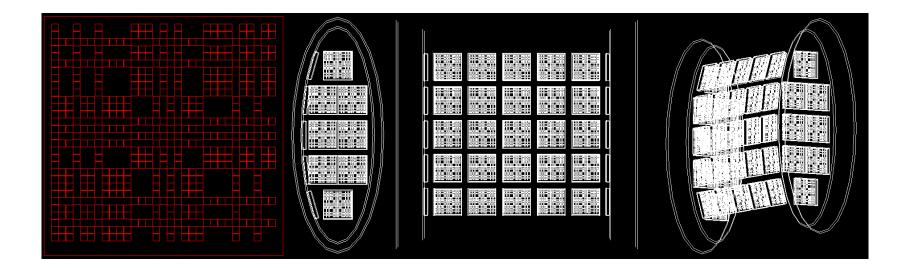
Primary concern for GRAIN: this ASIC does not scale

It's the first of its kind, could not expect more!

The final ASIC needs

- More channels per die AND more channels per I/O link
- Lower power consumption per channel
- Larger buffers to exploit beam duty cycle and relax peak link throughput
- Decoupled TDC clock (as is or higher) from I/O clock (prefer lower)
- Charge Integrator ADC in addition or instead of ToT (wishful thinking)

Simulation of advanced cameras


8 cameras on each lateral face

25 cameras on each curved face

32x32 sensor matrix with 6.2x6.2 mm² SiPMs (198.4 x 198.4 mm²)

31x31 mask with 5.61x5.61 mm² holes (192 x 192 mm², including an extra border)

Cameras on one curved faces are omitted in the pictures.

