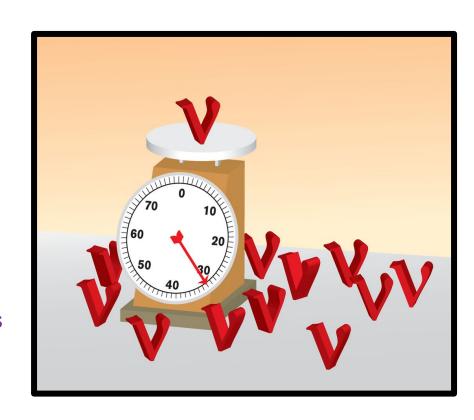
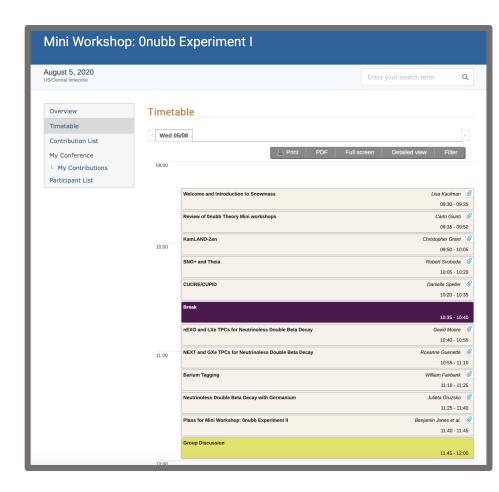
NF05: Neutrino Properties


NF05 Conveners: Ben Jones, Lisa Kaufman, Carlo Giunti, Diana Parno

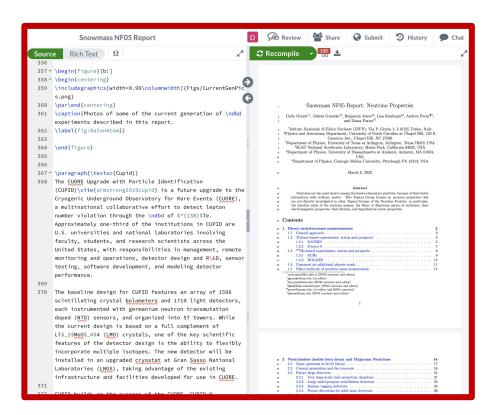
NF05 honorary co-conveners: Andrea Pocar (RF04), Julieta Gruszko

Group Scope

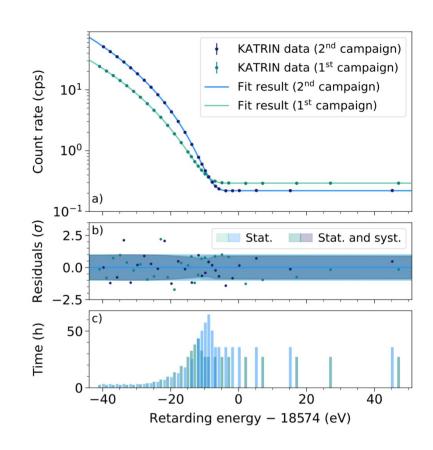
Neutrino Properties is a very broad term!


- Early in Snowmass we defined our groups scope as the following topics not covered elsewhere:
 - Direct neutrino mass measurements
 - Dirac vs Majorana nature
 - Electromagnetic properties

• Input for the NF05 report was sought via:


- 6 summer half-day workshops in Summer 2020
- A workshop on the ton-scale future of Onubb in Dec 2020
- Snowmass LOIs
- A fairly small number of whitepapers (not all of them yet in our hands)

 Everything presented in one of these formats <u>that we have</u> <u>received</u> is covered in our report draft.

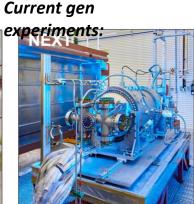

Report status

- Advanced draft in overleaf: 43 pages of text + 248 references.
- We have a few sections still to complete, expect it to top out around 46pages + 18pg of refs
- We have generally tried to be brief and where other white papers exist, or topic area is covered by another group, refer rather than rewrite.
- This means topics that have white papers take less space in our report than ones without white papers.
- We encourage readers not to equate length of text with importance of topic; instead consider it correlated to well-documented-elsewhere-ness.

Motivating considerations: Direct Neutrino Mass

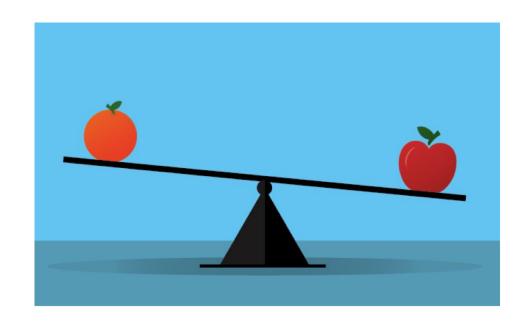
- Community is fairly unified in its vision for direct neutrino mass.
- Two main experiments in tritium:
 - KATRIN (present gen)
 - Project8 (next gen)
- Two main experiments in Holmium:
 - ECHo
 - HOLMES
- Plus connections to other BSM physics searches
- And brief mention of other approaches to this question (cosmology, etc)

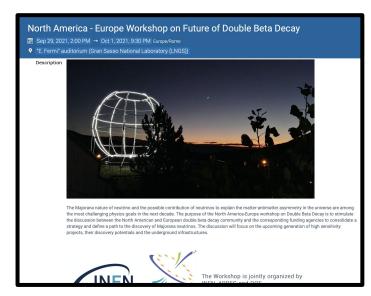
1	Dire	Direct neutrino-mass measurements			
	1.1	General approach	3		
	1.2	Tritium-based experiments: status and prospects	4		
		1.2.1 KATRIN	5		
		1.2.2 Project 8	7		
	1.3	¹⁶³ Ho-based experiments: status and prospects	8		
		1.3.1 ECHo	9		
		1.3.2 HOLMES	10		
	1.4	Comment on additional physics reach	11		

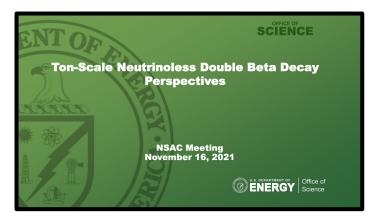

Motivating considerations: Onubb

 On the contrary, a rather wider array of perspectives exists in Onubb.

- We have tried to ensure they are all represented
 - Or at least, all the ones with US involvement!

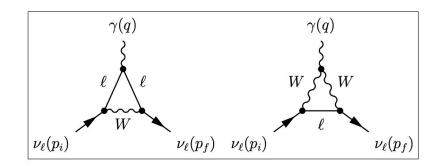





Motivating considerations: Onubb

- We have opted **not** to attempt to quantitatively compare different detectors yet to be built.
- While we can easily ask collaborations for the vital statistics of their future detector, we cannot correct for varying robustness of those projections.
- There seemed to us little value in an exercise comparing different levels of optimism in backgrounds of unbuilt detectors.

- There is an ongoing process within DOE NP concerning realization of at least one ton-scale Onubb experiment, and ideally more than one, within the next decade.
- This process has been proceeding with potentially quite consequential steps during this Snowmass process.
- We have endeavored not to interfere.
- We briefly review current-gen and ton-scale in our report, but primarily focus on the possible beyond-ton-scale future.
- The main message to convey is that:
- Searches for Onubb are a critical pillar of the world neutrino physics program; continued investment is needed to realize both this generation and the next generation of experiments.



2	Neu	eutrinoless double beta decay and Majorana Neutrinos					
	2.1 Open questions in $0\nu\beta\beta$ theory						
	2.2	2.2 Current generation and the ton-scale					
	2.3	Future large detectors					
		2.3.1	Very large-scale time projection chambers	21			
		2.3.2	Large multi-purpose scintillation detectors	23			
		2.3.3	Barium tagging detectors	24			
		2.3.4	Future directions for solid state detectors	26			
	2.4	Impro	ving performance of existing technologies	28			
		2.4.1	New photon detectors	28			
		2.4.2	Approaches to reducing radiogenic backgrounds	28			
		2.4.3	Approaches to reducing cosmogenic backgrounds	29			
		2.4.4	New background sources: (α,n) reactions and solar neutrinos	29			
		2.4.5	Deepening understanding of detector micro-physics	30			
	2.5	Isotop	e Procurement	31			
	2.6	Facilit	ies for $0\nu\beta\beta$ experiments	32			
		2.6.1	Underground laboratory facilities	32			
		2.6.2	Assay capabilities	33			
	2.7	Other	approaches to testing for Majorana neutrinos	33			
		2.7.1	Neutrinoless double electron capture	34			
		2.7.2	Majorana particles at colliders				

Motivating considerations: Electromagnetic Properties

- No major experiment in the US pursues electromagnetic properties as its primary goal.
- Nevertheless, they are important fundamental properties of neutrinos, accessible mainly through low energy neutrino scattering.
- A brief review of theoretical and experimental status is given.
- The most programmatically relevant aspect is probably connections to CEvNS, which is covered here in brief.

Method	Experiment	$\operatorname{Limit}\ [e]$	$_{\mathrm{CL}}$	Year	Ref.
Neutrality of matter	Bressi et al. [220]	$Q_{\nu_e} \in (-3.8, 2.6) \times 10^{-21}$	68%	2014	[177]
	TEXONO [221]	$ Q_{\nu_e} < 3.7 \times 10^{-12}$	90%	2006	[222]
Reactor $\bar{\nu}_e e^-$	GEMMA [195]	$ Q_{ u_e} < 1.5 imes 10^{-12}$	90%	2013	[223]
	TEXONO	$ Q_{ u_e} < 1.0 imes 10^{-12}$	90%	2014	[224]
Accelerator $(\nu_{\mu}, \bar{\nu}_{\mu}) e^{-}$	LSND [181]	$ Q_{\nu_{\mu}} < 3 \times 10^{-9}$	90%	2020	[225]
Beam Dump	BEBC [196]	$ Q_{\nu_{\tau}} < 4 \times 10^{-4}$	90%	1993	[226]
Accelerator $(\nu_{\tau}, \bar{\nu}_{\tau}) e^{-}$	DONUT [198]	$ Q_{\nu_{\mu}} < 4 \times 10^{-6}$	90%	2020	[225]
CEvNS	COHERENT [185, 186]	$\begin{aligned} Q_{\nu_e} &\in (-14, 34) \times 10^{-8} \\ Q_{\nu_e} &\in (-10, 12) \times 10^{-8} \\ Q_{\nu_{e\mu}} &< 17 \times 10^{-8} \\ Q_{\nu_{e\tau}} &< 27 \times 10^{-8} \\ Q_{\nu_{\mu\tau}} &< 20 \times 10^{-8} \\ Q_{\nu_e} &< 3.3 \times 10^{-12} \end{aligned}$	95% 90%	2020	[187]
	CONOS	$ Q_{\nu_e} < 3.3 \times 10^{-12}$ $ Q_{\nu_e} < 7.3 \times 10^{-12}$	3070	2022	[199]
Solar $\nu_e e^-$	XMASS-I	$ Q_{\nu_e} < 1.3 \times 10$ $ Q_{\nu_{\mu}} , Q_{\nu_{\tau}} < 1.1 \times 10^{-11}$	90%	2020	[204]
Table 5:	Table 5: Experimental limits for the neutrino electric charges.				

3	Neutrino Electromagnetic Properties					
	3.1	Charge Radius	37			
	3.2	Magnetic Moment	39			
	3.3	Electric Charge	41			

Other.

72
42
42
43

• Finally we make a very brief, passing reference to these two topics, though expect they mostly reside within the NFO3 group purview.

What did we miss?

- We will circulate report draft soon. If we missed something tell us!
- If you don't like the text about your experiment, reach out with a replacement!
- Our main goal was inclusivity and to ensure nothing that was contributed to Snowmass was omitted, while presenting an organized view of a busy and active area.
- Your feedback welcome!

