

Energy Frontier Workshop Brown University Mar.28th-Apr.1st, 2022

Higgs Precision at Muon Collider

Zhen Liu University of Minnesota

Two Distinctive Higgs Programs at Muon Colliders

- 125 GeV s-channel Resonant Higgs Factory
- High Energy Higgs Factory

PESILS:

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Lots of open questions

How would the width, mass, signal strength fit scale in various scenarios?

- Change of Luminosity (expecting some nonlinearities from the beam energy spread);
- Lineshape scanning steps
- Lineshape scanning range
- Inclusion of more channels

The convolution of various effects are highly non-trivial. So new studies will help understand better:

- 125 MuC Higgs physics
- Robustness of the width fit
- Allowing future studies on systematics

We made attempt to address these in our recent study, J. de Blas, Jiayin Gu, ZL, <u>2203.04324</u>

Muon Collider Higgs Physics

Zhen Liu

Correlations!

Larger width corresponds to larger coupling². Note: this is a different power compared to the normal "flat direction", which is coupling⁴.

Muon Collider Higgs Physics

Zhen Liu

Luminosity Scaling

Using our new Monte Carlo fit, we show that:

Width precision basically scales as 1/Sqrt[L], so we can gain a lot with higher lumi.

The Snowmass Muon Collider Forum benchmark Luminosity $20 f b^{-1}$.

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

03/31/2022

6

General κ fit (so called "model independent fit")

 $\sigma(i \to H \to j) \propto \frac{\Gamma_i \Gamma_j}{\Gamma_{tot}} \propto \frac{\kappa_i^2 \kappa_j^2}{\kappa_{\Gamma}} \Rightarrow \Delta \kappa_j = 1/2(\Delta \kappa_j^2)$ ΔM_H Γ_H $\sigma(ZH)$ 2.8%0.51%5.5 MeV $= 1/2(\Delta \kappa_{\Gamma} \bigoplus \Delta \sigma(i \to H \to j) \bigoplus \Delta \kappa_i^2)$ **CEPC** per channel precision Precision of Higgs coupling measurement (10-parameter Fit) 10^{-1} Signature numbers $\sigma(ZH) \times BR$ Decay mode 📕 CEPC 240 Gev @ 5.6 ab⁻¹ κ_Γ 2.8% 0.28% $H \rightarrow bb$ combined with HL-LHC S2 $\kappa_z 0.25\%$ 2.2% $H \to cc$ $\kappa_b \ 1.3\%$ Error $H \rightarrow gg$ 1.6% κ_{τ} 1.5% 1.2% $H \to \tau \tau$ 10-2 Relative 1.5% $H \to WW$ $H \rightarrow ZZ$ 4.3%9.0% $H \to \gamma \gamma$ $H \rightarrow \mu \mu$ 17% $H \to inv$ 0.28% 10^{-} κ_{μ} BR^{BSM}_{inv} KΓ ΚW K_{τ} KΖ K_V Kb K_c Ka

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

03/31/2022

New Insight: the total width sets a floor for the individual coupling extraction as:

Individual Channel Precision

Let's check precision with $\sim 1/4$ on-shell statistics (with different bkg)

Channel	Rate	Signal	Background	P	recision	[%]	
$\mu^+\mu^- \to h \to X$	[pb]	Events	Events	Cut &	t & Count		nned
			Results for	$5/20 {\rm ~fb^-}$	1		
$bar{b}$	13	19000/77000	45000/180000	1.0/0.51		0.97	/0.49
$c\bar{c}$	0.63	2300/9200	43000/170000	24/12		23	/12
gg	1.8	5400/22000	$260000/10^{6}$	11/5.5		11	(5.3)
$ au_{ m had}^+ au_{ m had}^-$	0.58	1400/5600	19000/76000	10/5.1	68/34	48	/2.4
$\tau_{\rm had}^+ \tau_{\rm lept}^-$	0.63	1500/6100	18000/71000	9.1/4.5	0.0/0.1	1.0	/ 2.1
$\gamma\gamma$	0.05	150/605	180000/730000	280/140		190	/94

Muon Collider Higgs Physics

Zhen Liu

Individual Channel Precision. Let's check precision with ~1/4 on-shell statistics (with different bkg)

Channel	Rate	Signal	Background	Prec	ision [%	1
$\mu^+\mu^- \to h \to X$	[pb]	Events	Events	Cut & Cou	int	Binned
			Results for	$5/20 { m ~fb^{-1}}$		•
$2\ell 2q \ (\ell=e,\mu)$	0.05	130/530	1200/4800	28/14		
$2\nu 2j$	0.16	450/1800	320/1300	$6.1/3.1_{-5.3}$	8/2.9	
$2e2\nu^{\ddagger}$	0.005	8/33	0/1	35/18	,	
$2\mu 2 u^{\ddagger}$	0.005	9/35	0/1	34/17		
$e u \mu u$	0.11	320/1300	9/35	5.7/2.8		
$\ell \nu \tau_{\rm had} \nu \ (\ell = e, \mu)$	0.14	330/1300	8/32	5.6/2.8		
$\ell \nu j j \ (\ell = e, \mu)$	1.4	3800/15000	88/350	1.6/0.82		
$ au_{ m had} u j j$	0.45	1000/4000	20/79	3.2/1.6 1.3	/0.67	
$2e2\nu^{\dagger}$	0.06	160/660	86/340	9.6/4.8		
$2\mu 2 u^{\dagger}$	0.06	160/650	76/310	9.5/4.7		1
$2 au_{ m had}2 u^{\dagger}$	0.023	46/180	24/97	18/9.1		
$4j(j \neq b)$	2.3	3400/14000	51000/210000	6.8/3.4		

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

9

Now the Model-Independent MuC Width matters!

- This MuC width is a parametrically new measurement; the correlations with other parameters are distinctive.
- Complementary to other lepton collider Higgs factories
- Sub-percent muon Yukawa
- Good lumi scaling with couplings
- Excellent improvement when combined with e+e-Higgs factories
- We have a global picture of the 125 GeV MuC Higgs physics potential, which helps us with planning.

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Higgs at High-Energy MuC

High Energy Muon Collider provides a vibrant and growing Higgs physics program:

- Baseline Precision couplings
- Higgs Self-coupling
- Top Yukawa through interference
- Muon Yukawa at different energies
- + many more (see talks by A. Wulzer, F. Maltoni, and Snowmass Muon Collider forum discussion later today)

Baseline Higgs Measurements

Production	Decay	$\Delta \sigma /$	σ (%)
Tioduction	Decay	$3\mathrm{TeV}$	$10\mathrm{TeV}$
	bb	0.84	0.24
	cc	14	4.4
	gg	4.2	1.2
	$ au^+ au^-$	4.5	1.3
	$WW^*(jj\ell\nu)$	1.8	0.50
WW-fusion	$WW^*(4j)$	5.7	1.4
w w -rusion	$ZZ^*(4\ell)$	48	13
	$ZZ^*(jj\ell\ell)$	12	3.5
	$ZZ^*(4j)$	67	16
	$\gamma\gamma$	7.7	2.1
	$Z(jj)\gamma$	73	20
	$\mu^+\mu^-$	43	11
	bb	7.9	2.2
77 fusion	$bb, (N_{\mu} \ge 2)$	2.6	0.77
ZZ-IUSIOI	$WW^*(4j)$	49	12
	$WW^*(4j), (N_{\mu} \ge 2)$	17	4.3
tth	bb	61	53

M. Forslund, P. Meade, <u>2203.09425</u>

See also discussion in Muon Smasher's Guide, <u>2103.14043</u> T. Han, Y. Ma, K.-P. Xie, <u>2007.14300</u>; Costanini, De Lillo, Maltoni, Mantani, Mattelaer, <u>2005.10289</u>

Energy Frontier Workshop (Brown U)

Muon Collider Higgs Physics

Zhen Liu

Higgs Precision

Fit Result [%]								
	$\mu^+\mu^-$		+ HL-	LHC	+ HL-LHO	+ HL-LHC + 250 GeV e^+e^-		
	$3 { m TeV}$	10 TeV	3 TeV	$10 { m TeV}$	3 TeV	$10 { m TeV}$		
κ_W	0.45	0.13	0.39	0.12	0.34	0.11		
κ_Z	3.4	0.94	1.3	0.77	0.12	0.11		
κ_g	2.4	0.67	1.5	0.63	0.76	0.50		
κ_{γ}	3.9	1.1	1.3	0.84	1.2	0.81		
$\kappa_{Z\gamma}$	37	10	37	10	4.1	3.8		
κ_c	7.5	2.3	7.4	2.3	1.8	1.4		
κ_t	35	53	3.2	3.2	3.2	3.2		
κ_b	0.98	0.27	0.88	0.27	0.45	0.23		
κ_{μ}	22	5.4	4.7	3.6	4.1	3.3		
$\kappa_{ au}$	2.5	0.71	1.3	0.64	0.63	0.43		

Muon Collider Higgs Physics

Zhen Liu

Higgs Precision \bigcirc March 15, 2022 Muchanian Muchan https://muoncollider.web.cern.ch The physics case of a 3 TeV muon collider stage c_i/A²[TeV⁻²]

Muon Collider Higgs Physics

Energy Frontier Workshop (Brown U)

03/31/2022 14

Multi-Higgs & Higgs Self-couplings

\sqrt{s} (lumi.)	$3 \text{ TeV} (1 \text{ ab}^{-1})$	6 (4)	10 (10)	14 (20)	30 (90)	Comparison
$WWH \ (\Delta \kappa_W)$	0.26%	0.12%	0.073%	0.050%	0.023%	0.1% [41]
$\Lambda/\sqrt{c_i}$ (TeV)	4.7	7.0	9.0	11	16	(68% C.L.)
$ZZH (\Delta \kappa_Z)$	1.4%	0.89%	0.61%	0.46%	0.21%	0.13% [17]
$\Lambda/\sqrt{c_i}$ (TeV)	2.1	2.6	3.2	3.6	5.3	(95% C.L.)
$WWHH \ (\Delta \kappa_{W_2})$	5.3%	1.3%	0.62%	0.41%	0.20%	5% [36]
$\Lambda/\sqrt{c_i}$ (TeV)	1.1	2.1	3.1	3.8	5.5	(68% C.L.)
$HHH (\Delta \kappa_3)$	25%	10%	5.6%	3.9%	2.0%	5% [22, 23]
$\Lambda/\sqrt{c_i}$ (TeV)	0.49	0.77	1.0	1.2	1.7	(68% C.L.)

Allow %-level trilinear Higgs measurements, and a consistent measurement between gauge boson-Higgs coupling measurements.

T. Han, D. Liu, I. Low, X. Wang, 2008.12204

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Multi-Higgs & Higgs Self-couplings

O(1) quartic determination possible. Chiesa, Maltoni, Mantani, Mele, Piccinini, <u>2003.13628</u>

Correlated measurements of trilinear and quartic couplings reveals deep information about EFT and EWPT.

e.g, Huang, Joglekar, Wagner, 1512.00068, Falkowski, Gonzalez-Alonso, Grejio, Marzocca, M. Son, 1609.06312, Chang, Luty, 1902.05556,+Abu-Ajamieh, M. Chen, 2009.11293; DiHiggs review 1910.00012

Muon Collider Higgs Physics

Zhen Liu

Top Yukawa from interference

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Higgs Muon Couplings Running Yukawa

T. Han, W. Kilian, N. Kreher, Y. Ma, J. Reuter, <u>2108.05362</u>

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Summary

125 GeV s-channel resonant Higgs Factory

- This MuC width is a distinctive measurement;
- Complementary to other lepton collider Higgs programs
- Sub-percent muon Yukawa
- Global picture of the 125 GeV MuC Higgs physics potential, which helps us with planning.

High Energy Muon Collider provides a vibrant and growing Higgs physics program:

- Baseline Precision couplings
- Higgs Self-coupling
- Top Yukawa through interference
- Muon Yukawa at different energies
- + many more (see talks by A. Wulzer, F. Maltoni, and Snowmass Muon Collider forum discussion later today)

Muon Collider Higgs Physics

Zhen Liu

(2.5)

$$\beta_v = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{v}{16\pi^2} \left(\frac{9}{4}g_2^2 + \frac{9}{20}g_1^2 - 3y_t^2\right), \qquad (2.3)$$

$$\beta_{g_i} = \frac{\mathrm{d}g_i}{\mathrm{d}t} = \frac{b_i g_i^3}{16\pi^2}, \qquad (2.4)$$

with $t = \ln(Q/M_Z)$ and the coefficients b_i for the gauge couplings (g_1, g_2, g_3) given as

 $b_i^{\text{SM}} = (41/10, -19/6, -7).$

		*			_
		Constrai	ints on δ_4 (with	$1 \delta_3 = 0)$	
\sqrt{s} (TeV)	Lumi (ab^{-1})	x-sec (only, acceptance	ce cuts	
		1σ	2σ	3σ	
6	12	[-0.50, 0.70]	[-0.74, 0.95]	[-0.93, 1.15]	
10	20	[-0.37, 0.54]	[-0.55, 0.72]	[-0.69, 0.85]	
14	33	[-0.28, 0.43]	[-0.42, 0.58]	[-0.52, 0.68]	
30	100	[-0.15, 0.30]	[-0.24, 0.38]	[-0.30, 0.45]	
3	100	[-0.34, 0.64]	[-0.53, 0.82]	[-0.67, 0.97]	
Muon Col	naer Higgs Phys	ics Znen i	lu Energy	Frontier works	hop (Brown

 $\rightarrow h\gamma$ $\mu^+\mu^ C_T^{\mu\ell}/\Lambda^2 \times (100 \text{ TeV})^2$ Δa_{μ} from E821 -0.1 Combined $\sqrt{s} = 30 \text{ TeV}$ -0.3-0.2 -0.10.0 0.1 0.2 0.3 $C^{\mu}_{\mathrm{e}\gamma}/\Lambda^2 \times (100 \mathrm{~TeV})^2$

> 20 03/31/2022

125 Kappa with 5 fb^-1

Muon Collider Higgs Physics

Zhen Liu

125 EFT with 20 fb^-1

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

125 EFT with 5 fb^-1

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Muon "structure"

When colliding high energy leptons, we are colliding a bunch of electroweak states.

See in-depth discussion by T. Han, Y. Ma, K.-P. Xie, <u>2007.14300</u>, <u>2103.09844</u>; Ali et al, Muon Smasher's guide <u>2103.14043</u>

Zhen Liu

 $\frac{10^{-3} \times 10^{-2} \times 10^{-1}}{03/31/2022}$

 $\mathbf{24}$

0.2

Muon Collider Higgs Physics

Our study on CEPC/ILC/FCCee only used Z(->ll)H, there is 10x statistics to be used

Exotic Decay Overall Picture

125 GeV MuC: no tagging spectator Z issues and less combinatoric background.

with missing Energy (SUSY motivated, DM motivated channels)

3-4 orders of magnitude improvement for the constraints on such exotic branching fractions

 $h \rightarrow 4f$ generic Higgs sector extensions, also Higgs portals

2-3 orders of magnitude improvement for the constraints on such exotic branching fractions

Muon Collider Higgs Physics

Zhen Liu

Original plot without MuC, ZL, Wang, Zhang, <u>1612.09284</u>, updated by ZL following future collider program updates; MuC very preliminary results compiled by ZL. 25

Energy Frontier Workshop (Brown U)

03/31/2022

Complementarity: Muon g-2

$$\mathcal{L} = \frac{C_{eB}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) H B_{\mu\nu} + \frac{C_{eW}^{\ell}}{\Lambda^2} \left(\bar{\ell}_L \sigma^{\mu\nu} e_R \right) \tau^I H W_{\mu\nu}^I + \frac{C_T^{\ell}}{\Lambda^2} (\bar{\ell}_L^a \sigma_{\mu\nu} e_R) \varepsilon_{ab} (\overline{Q}_L^b \sigma^{\mu\nu} u_R) + h.c.$$
(2)

Also see various model-specific (complementary / comprehensive) discussions in Capdevilla, Curtin, Kahn, Krnjaic, <u>2006.16277</u>, <u>2101.10334</u>; W. Yin, Yamaguchi, <u>2012.03928</u>; N. Chen, B. Wang, C.-Y., Yao, <u>2102.05619</u>; Dermisek, Hermanek, McGinnis, <u>2108.10950</u>

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Complementarity: EDM

Muon Collider Higgs Physics

Zhen Liu

Official CEPC results, updated with HL-LHC projection for ESU

A representative view (CEPC/FCC-ee/ILC)

Relative Error

Without external constraints on the coupling strength (width), HL-LHC fit has huge flat direction (the fit does not close)*

*since LHC width measurement is poor, putting a universal floor of around 10%~20% for LHC measurements interpreted in this framework, assuming additional input from off-shell ZZ measurements to bound the Higgs total width)

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Higgs factories improves in b, c, g, W, and especially Z coupling. HL-LHC provide crucial inputs for muon Yukawa, Higgs to $\gamma\gamma$, etc.

Precision of Higgs coupling measurement (7-parameter Fit)

HL-LHC S1/S2

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

Now the Model-Independent MuC Width matters! Let's check precision with 1/5 on-shell statistics (with different bkg)

ΔM_H	Γ_H	$\sigma(ZH)$	Channel $\mu^+\mu^- \to h \to X$	Rate [pb]	Signal Events	Background Events	P Cut &	recision Count	[%] Binned
$5.5 { m MeV}$	2.8%	0.51%		[1-~]		Results for	$5/20 { m ~fb^-}$	-1	
e+e- collide	er per chan	nel precision	$b\overline{b}$	13	19000/77000	45000/180000	1.0/0.51		0.97/0.49
Decay mode		$\overline{\sigma(ZH)} \times \mathrm{BR}$	cc gg	1.8	2300/9200 5400/22000	43000/170000 $260000/10^{6}$	$\frac{24}{12}$ 11/5.5		$\frac{23}{12}$ 11/5.3
$H \rightarrow bb$		0.28%	$ au_{ m had}^+ au_{ m had}^-$	0.58	1400/5600	19000/76000	10/5.1	6.8/3.4	4.8/2.4
$H \to cc$		2.2%	$ au_{had}^{\dagger} au_{lept}^{\dagger}$	0.63	1500/6100	18000/71000	9.1/4.5		190/94
H ightarrow gg		1.6%	$\frac{1}{2\ell 2q} \ (\ell = e, \mu)$	0.05	130/530	1200/4800	28/14		150/54
$H\to\tau\tau$		1.2%	$2\nu 2j$	0.16	450/1800	320/1300	6.1/3.1	5.8/2.9	
$H \rightarrow WW$		1.5%	$2e2 u^{\ddagger}$ $2\mu 2 u^{\ddagger}$	0.005 0.005	$\frac{8}{33}$ 9/35	$0/1 \\ 0/1$	$\frac{35}{18}$ $\frac{34}{17}$		
$H \rightarrow ZZ$		4.3%	$e\nu\mu\nu$	0.11	320/1300	9/35	5.7/2.8		
$H \rightarrow \gamma \gamma$		9.0%	$\ell \nu \tau_{\rm had} \nu \ (\ell = e, \mu)$	0.14	330/1300	8/32	5.6/2.8		
$H \rightarrow \mu \mu$		17%	$ au j j \ (\ell = e, \mu) \ au_{ m had} u j j$	0.45	1000/4000	20/79	3.2/1.6	1.3/0.67	
$H \rightarrow inv$		0.28%	$2e2\nu^{\dagger}$	0.06	160/660	86/340	9.6/4.8		
		0.2070	$2\mu 2 u^{\dagger}$ $2 au_{ m had} 2 u^{\dagger}$	0.06	46/180	24/97	9.5/4.7 18/9.1		
			$4j(j \neq b)$	2.3	3400/14000	51000/210000	6.8/3.4		

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown U)

30

Baseline Higgs Measurements

$10 { m TeV} @ 10 { m ab}^{-1}$							
Production	Decay	Rate [fb]	$A \cdot \epsilon \ [\%]$	$\Delta\sigma/\sigma$ [%]			
	bb	490	7.4	0.17			
	CC	24	1.4	1.7			
	jj	72	37	0.19			
	$ au^+ au^-$	53	6.5	0.54			
	$WW^*(jj\ell\nu)$	53	21	0.30			
W_{-} fusion	$WW^*(4j)$	86	4.9	0.49			
<i>w</i> -1051011	$ZZ^*(4\ell)$	0.1	6.6	12			
	$ZZ^*(jj\ell^+\ell^-)$	2.1	8.9	2.3			
	$ZZ^*(4j)$	11	4.6	1.4			
	$\gamma\gamma$	1.9	33	1.3			
	$Z(jj)\gamma$	0.9	27	2.0			
	$\mu^+\mu^-$	0.2	37	0.37			
Z-fusion	bb	51	8.1	0.49			
2-1051011	$WW^*(4j)$	8.9	6.2	1.3			
W-fusion tth	bb	0.06	12	12			

The Muon Smasher's Guide

Hind Al Ali¹, Nima Arkani-Hamed², Ian Banta¹, Sean Benevedes¹, Dario Buttazzo³, Tianji Cai¹, Junyi Cheng¹, Timothy Cohen⁴, Nathaniel Craig¹, Majid Ekhterachian⁵, JiJi Fan⁶, Matthew Forslund⁷, Isabel Garcia Garcia⁸, Samuel Homiller⁹, Seth Koren¹⁰, Giacomo Koszegi¹, Zhen Liu^{5,11}, Qianshu Lu⁹, Kun-Feng Lyu¹², Alberto Mariotti¹³, Amara McCune¹, Patrick Meade⁷, Isobel Ojalvo¹⁴, Umut Oktem¹, Diego Redigolo^{15,16}, Matthew Reece⁹, Filippo Sala¹⁷, Raman Sundrum⁵, Dave Sutherland¹⁸, Andrea Tesi^{16,19} Timothy Trott¹, Chris Tully¹⁴, Lian-Tao Wang¹⁰, and Menghang Wang¹

See also discussion in T. Han, Y. Ma, K.-P. Xie, 2007.14300;

Muon Collider Higgs Physics

Zhen Liu

Energy Frontier Workshop (Brown, De)Lillo, Maltoni, Mantani Matter 2005. 319