Higgs Physics @ FCC-ee

Snowmass Energy Frontier Workshop March 23, 2021

Christophe Grojean

Why a Higgs Factory?

The Higgs discovery in 2012 has been an important milestone for HEP. Many of us are still excited about it. And others should be excited too. Unique phenomena never observed before in Nature. Consequences and implications are immense for different areas of physics & beyond. Almost every BSM scenario will have important implications in the Higgs sector.

Are we done? What's next?

Remember May 1, 2003

"Mission accomplished" speech by G.W. Bush

That was certainly not the end of the story and there were (are) still a lot of things to do

Ian Low just explained why we need to continue, I'll tell you how to do it and what can be learnt.

Christophe Grojean

Which Machine(s)?

Choice between different options: delicate balance between physics return, technological challenges and feasibility, time scales for completion and exploitation, financial and political realities

• Higher luminosity, several IPs • Dedicated Z-pole program with high lum.

Snowmass 2021 Higgs Factory Considerations

		— Physi	cs Considera	ations —		
P1	P2	P3	P4	P5	P6	P7
Precision Higgs	Measurements	Sensitivity to	New Physics	Direct measure	Indirect	Improved
measurements	of Higgs self-	rare and exotic	discovery	of EW/Yukawa	sensitivity to	measurements
to SM particles	coupling(s)	Higgs decays	potential	top coupling	New Physics	of α_s

Technological Considerations

			Jyical Conside			
T1	T2	Т3	Т4	T5	Т6	Τ7
Range of operating E/ease of changing E	Annual integrated luminosity	Upgradability to higher energy/ luminosity	Extent and cost of remaining R&D	Ability to operate at the tt threshold	Ability to run at the Z pole	Ability to run at the WW threshold
Т8	Т9	T10	T11	T12-T13	T14-T15	T16
Stability and calibration of collision energy	Beam stability and luminosity calibration	Ability to control beam-related backgrounds	Ability to provide independent confirmation of new discoveries	Ability to provide polarised electrons/ positrons	Possibility to reconfigure as γγ, e-γ, e-e-, ep, pp collider	Opportunities for beam dumps experiments
			T17			

Need for, and scientific utility of, technology demonstrators

J. Bagger+ arXiv:2203.06164

Physics Thresholds

FCC-ee Run Plan

LEP data accumulated in first 3 mn. Then exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation)

in each detector: 10⁵ Z/sec, 10⁴ W/hour, 1500 Higgs/day, 1500 top/day

Christophe Grojean

r-of-mass	Integrated
ies (GeV)	Luminosity (ab ⁻¹)
8-95	150
8-162	12
240	5
5-365	1.5

		E _{CM} errors:
² e+e- → Z	LEP x 10 ⁵	<100 keV
e+e- → WW	LEP x 2.10 ³	<300 keV
e+e- → ZH	Never done	1 MeV
)) e+e- → H	Never done	<< 1 MeV
e+e- → tt	Never done	2 MeV

FCC-ee Physics Programme

resolu Higgs sector definition imposes initial requirements on hadronic resolution, tracking and vertexing

Physics Process	Measured Quantity	Critical Detector	Req
$ZH \to \ell^+ \ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1$
$H \to \mu^+ \mu^-$	$BR(H \to \mu^+ \mu^-)$	Паске	$\oplus 1$
$H \rightarrow b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	σ
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 1$

Higgs

m_{Higgs}, Г_{Higgs} Higgs couplings self-coupling

quired Performance $1/p_{\rm T}) \sim 2 \times 10^{-5}$ $\times 10^{-3}/(p_{\rm T} \sin \theta)$ $5 \oplus 10/(p \sin^{3/2} \theta) \ \mu {\rm m}$ $\sigma_E^{\rm jet}/E \sim 3 - 4\%$ $16\%/\sqrt{E} \oplus 1\%$ (GeV)

Discovery Potential Beyond LHC

Precisely measured EW and Higgs observables are sensitive to heavy New Physics

Examples of improved sensitivity wrt direct reach @ HL-LHC: SUSY

Fan, Reece, Wang '14

ESU Physics BB '19

Heavy neutral Higgses

ESU Physics BB '19

5 Energy Frontier WS, March 31, 2022

Direct Searches for Light New Physics

- LLP searches with displaced vertices
 - e.g. in twin Higgs models glueballs that mix with the Higgs and decay back to b-quarks

CLIC₃₈₀ $L = 0.5 \, \text{ab}^{-1} \, \cdot 1$

Astro/Cosmo \rightarrow long-lived ALPs ciated production Colliders \rightarrow short-lived ALPs MeV+

ELIC300 L=0.5 ab-1 2rgy Frontier WS, March 31, 2022

Search for VRH

Direct observation in Z decays from LH-RH mixing

Important to understand 1. how neutrinos acquired mass 2. if lepton number is conserved 3. if leptogenesis is realised

ESU Physics BB '19

Higgs @ FCC-ee

Central goal of FCC-ee: model-independent measurement of Higgs width and couplings with (<)% precision. Achieved through operation at two energy points.

Sensitivity to both processes very helpful in improving precision on couplings.

Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson.

Collider	ILC_{250}	$\operatorname{CLIC}_{380}$	$FCC-ee_{240}$
$\operatorname{Cost}\ (\operatorname{Euros}/\operatorname{Higgs})$	7,000 to 12,000	$2,\!000$	255

G. Wilkinson, FCC Physics WS '22

Christophe Grojean

FCC-ee, 1906.02693

Higgs @ FCC-ee: Complementarity of 240/365 GeV

Christophe Grojean

ECFA Higgs study group '19

Higgs @ FCC-ee: Complementarity with HL-LHC

include HL-LHC cannot measure width close the fit no measured **t** BR_{unt} an assumption measured collider BR_{inv} hadron need Scenario kappa-2

Christophe Grojean

ECFA Higgs study group '19

Kappa-2, May 2019

CLIC₃₈₀

ILC250assumptionLHeC $(|\kappa_V| \le 1)$ needed for the fitHE-LHC $(|\kappa_V| \le 1)$ to close at hadronHL-LHC $(|\kappa_V| \le 1)$ machinesSnowmass Energy Frontier WS, March 31, 2022

Higgs @ FCC-ee: Complementarity with HL-LHC

Christophe Grojean

ECFA Higgs study group '19

Higgs @ FCC-ee: Complementarity with HL-LHC

ECFA Higgs study group '19

Impact of Z-pole measurements

Comparing 3 EW scenarios: LEP/SLD, actual EW measurements, perfect EW measurements

FCC-ee Z/WW/240GeV

J. De Blas et al. 1907.04311

light shade: CEPC/FCC-ee without Z-pole✓ CEPC/FCC-ee without WW threshold♥ perfect EW♥ perfect EWIepton colliders are combined with HL-LHC & LEP/SLDimposed U(2) in 1&2 gen guarks

10⁻¹

Impact of Z-pole measurements J. De Blas et al. 1907.04311 CLIC 380GeV + Z @380GeV light shade: CEPC/FCC-ee without Z-pole ILC 250GeV + Z @250GeV 10⁻¹ ✓ CEPC/FCC-ee without WW threshold ILC 250GeV/350GeV CLIC 380GeV/1.5TeV ☑ perfect EW&TGC ILC 250GeV/350GeV/500GeV CLIC 380GeV/1.5TeV/3TeV lepton colliders are combined with HL-LHC & LEP/SLD $P(e^{-},e^{+})=(\mp 0.8, 0)$ $P(e^{-},e^{+})=(\mp 0.8,\pm 0.3)$ imposed U(2) in 1&2 gen quarks

16

Impact of Z-pole Measurements

17

EW

Christophe Grojean

J. De Blas et al. 1907.04311 Sensitivity with prefect EW measurement

Impact of Z-pole Measurements J. De Blas et al. 1907.04311

17

Contamination EW/TGC/Higgs can be understood by looking at correlations

Without Z-pole runs, there are large correlations between EW and Higgs

Impact of Z-pole Measurements J. De Blas et al. 1907.04311

Christophe Grojean

17

Contamination EW/TGC/Higgs can be understood by looking at correlations

Higgs @ FCC-ee: Complementarity with FCC-hh

isolated ilentor

· DEI PHES 30 providas

3

FCC-hh without ee could still bound BR_{inv}

but it could say nothing

Jorge de Blas **INFN** - University of Padov

is Energy Frontier WS, March 31, 2022

Access to s Yukawa

mproved jet flavour tagging opens up new opportunities

BR(H \rightarrow ss) = BR (H \rightarrow cc) (m_c/m_c)² ~ 2.3 10⁻⁴

FCCee: σ_{7H}~200fb, L ~ 5 ab⁻¹ (2 IP): **~1M ZH** [600k H \rightarrow bb, 100k H \rightarrow gg, 30k H \rightarrow cc, **200 H** \rightarrow ss]

Use Loose WP:

[s-tag: 90%, g-mist: 10%, c-mist: 1%, b-mist: 0.4%

- Scenario 1: $Z(\rightarrow all)H$:

 $N_{ss} = 150, N_{h} = 1000$ (neglecting $ee \rightarrow VV$ backgrounds)

δ(σxBR)/σxBR (%) ~ 21 % (~ 5σ) [no systematics, only higgs backgrounds, no combinatorics]

- Scenario 2: $Z(\rightarrow vv)H$:

 $N_{ss} = 30, N_{h} = 200$ (neglecting ee \rightarrow vvqq and ee \rightarrow qq, can be important given large q \rightarrow s fake prob.)

δ(σxBR)/σxBR (%) ~ 49% (~ 2σ) [no systematics]

Selvaggi @ FCC week 2021

CMS

 $3\sigma K/\pi$

WP	Eff (s)	Mistag (g)	Mistag (ud)	Mistag (c)	Mistag (b)
Loose	90%	20%	40%	10%	1%
Medium	80%	10%	20%	6%	0.4%

20

Christophe Grojean

20

Christophe Grojean

	$\sigma imes \mathcal{B}$	Irreducible background	σ	S/B
	164 ab	$e^+e^- \rightarrow b\overline{b}$	19 pb	$\mathcal{O}(10^{-5})$
	23 ab	$e^+e^- ightarrow q\overline{q}$	$61 \mathrm{~pb}$	$\mathcal{O}(10^{-3})$
	18 ab	$e^+e^- \to \tau \tau$	10 pb	$\mathcal{O}(10^{-6})$
	$8.2 \mathrm{~ab}$	$e^+e^- \rightarrow c\overline{c}$	22 pb	$\mathcal{O}(10^{-7})$
2	26.5 ab	$e^+e^- \to WW^* \to \ell\nu \ 2j$	23 fb	$O(10^{-3})$
	$6.4 \mathrm{~ab}$	$e^+e^- \to WW^* \to 2\ell \ 2\nu$	$5.6~{\rm fb}$	$\mathcal{O}(10^{-3})$
	$27.6 \mathrm{~ab}$	$e^+e^- \to WW^* \to 4j$	24 fb	$\mathcal{O}(10^{-3})$
	2 ab	$e^+e^- \rightarrow ZZ^* \rightarrow 2j \ 2\nu$	273 ab	$O(10^{-2})$
	1 ab	$e^+e^- \to ZZ^* \to 2\ell \ 2j$	$136 \mathrm{~ab}$	$\mathcal{O}(10^{-2})$
	$0.3 \mathrm{~ab}$	$e^+e^- \to ZZ^* \to 2\ell \ 2\nu$	$39 \mathrm{ab}$	$\mathcal{O}(10^{-2})$
	$0.65 \mathrm{~ab}$	$e^+e^- \rightarrow \gamma \gamma$	79 pb	$\mathcal{O}(10^{-8})$

w. 10/ab

$2\nu; 2\ell \ 2j; \ 2\ell \ 2\nu$	${\rm H} \to b \overline{b}$	$\mathrm{H} \to \tau_{\mathrm{had}} \tau_{\mathrm{had}}; c \overline{c}; \gamma \gamma$	Combined
$5\otimes 0.05)\sigma$	0.13σ	$< 0.02\sigma$	1.3σ

hgs?

Snowmass Energy Frontier 11)5. March 31, 2022

Higgs Self-Coupling

50% sensitivity: establish that h³≠0 at 95%CL **20% sensitivity:** 5 σ discovery of the SM h³ coupling 5% sensitivity: getting sensitive to quantum corrections to Higgs potential

Christophe Grojean

ECFA Higgs study group '19

Don't need to reach HH threshold to have access to h^3 . Both 240&365GeV runs are needed.

The determination of h³ at FCC-hh relies on HH channel, for which FCC-ee is of little direct help. But the extraction of h³ requires precise knowledge of y_t . 1% yt \leftrightarrow 5% h³ Precision measurement of yt needs FCC-ee.

Other Directions Not Explored Yet

- Non-diagonal flavour structures:
 - 1. in SM, no Higgs FCNC
 - 2. in BSM, Higgs FCNC are the rule rather than the exception
 - 3. combination with flavour data (irrelevant in diag. flavour structure)
- CP violation couplings:
 - 1. in SM, a single CPV phase captured by Jarlskog invariant: $J_4 = \text{ImTr}\left([Y_u Y_u^{\dagger}, Y_d Y_d^{\dagger}]^3\right)$
 - 2. how many at dim-6 level?

large parameter space, largely unconstrained

potentially large new physics effects since do not suffer from same collective suppression factor of the SM

					inv. unde	$\mathrm{er} \ U(1)_{L_i} - U(1)_{L_j}$	
	Type of op.	# of ops	# real	# im.	# real	# im.	
ars	Yukawa	3	27	27	21	21	
linea	Dipoles	8	72	72	60	60	600
bi	current-current	8	51	30	42	21	099
	all bilinears	19	150	129	123	102	new
	LLLL	5	171	126	99	54	lorlokog
mi	RRRR	7	255	195	186	126	Janskog
-Feri	LLRR	8	360	288	246	174	BSM invariants
4	LRRL	1	81	81	27	27	
	LRLR	4	324	324	216	216	Bonnefov+ 2112 03889
	all 4-Fermi	25	1191	1014	774	597	
	all		1341	1143	897	699	

• Beyond SMEFT analyses, e.g. HEFT

Christophe	Grojean
Childephe	Gr Car

On-Going Studies

Higgs Per	formance meeting	
Monday 28	3 Mar 2022, 14:30 → 17:05 Europe/Zurich	
deoconferen	 Higgs performance meeting 	Toin
:30 → 14:40	Introduction ③ 10m Speakers: Jan Eysermans (Massachusetts Inst. of Technology (US)), Michele Selvaggi (CERN) Higgs_perf	
<mark>:40</mark> → 14:50	ZH, Z->ee/mumu: Higgs mass, cross-section and H> hadrons ① 10m ∠ ▼ Speakers: Ang Li (APC, CNRS/IN2P3 and Université de Paris), Giovanni Marchiori (APC, CNRS/IN2P3 and Université de Paris), Gregorio Bernardi (APC Paris CNRS/IN2P3), Jan Eysermans (Massachusetts Inst. of Technology (US)) 2022_03_2	<u>https://e-groups.cern.ch/e-groups/EgroupsSubsc</u>
50 → 15:00	ZH, Z->vv, Higgs ->hadron Im 2 - Speakers: Laurent Forthomme (CERN), Loukas Gouskos (CERN), Michele Selvaggi (CERN) Ig_fccee_z	A. Freitas
0 → 15:10	H->ss and strange tagging O 10m Speakers: Christopher Damerell (Science and Technology Facilities Council STFC (GB)), Jerry Vavra (SLAC), Matthew Basso (University of Toronto (CA)), Valentina Cairo (CERN)	C. Grojean G. Durieux J. de Blas
0 → 15:20	Higgs -> invisible	Physics Programme 2 theorists
→ 15:30	Higgs self coupling	G. Istdori G. Istdori J. Kamenik F. Simon
→ 15:40	ee->H O 10m Z - Speaker: David d'Enterria (CERN)	Discovery stories Operation model optimization Precision calculations & generators
→ 15:50	H->tau tau and new scalars O 10m Z - Speakers: Clement Helsens (CERN), Markus Klute (Karlsruhe Inst. of Technology (GER)), Xunwu Zuo (Rice University (US)) FCCee-Hig	S. Heinemeye T. You
→ 16:00	Anomalous couplings Interview Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT, Madrid)), Maria Cepeda (CIEMAT)	

Christophe Grojean

e team!

ion.do?egroupName=FCC-PED-PhysicsGroup-Higgs

EXTRA MATERIAL

		_	- 50.43	(_				
Collider	Type	\sqrt{s}	\mathcal{P} [%]	N(Det.)	$\mathcal{L}_{\text{inst}} \left[10^{34} \right]$	\mathcal{L}	Time	Refs.	Abbreviation	
			$[e^{-}/e^{+}]$		$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	$[ab^{-1}]$	[years]			
HL-LHC	pp	$14\mathrm{TeV}$		2	5	6.0	12	[13]	HL-LHC	
HE-LHC	pp	$27{ m TeV}$		2	16	15.0	20	[13]	HE-LHC	nn
$\text{FCC-hh}^{(*)}$	pp	$100{\rm TeV}$		2	30	30.0	25	[1]	FCC-hh	PP
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]		
		$2M_W$	0/0	2	25	10	1 - 2			
		$240{ m GeV}$	0/0	2	7	5	3		$FCC-ee_{240}$	
		$2m_{ m top}$	0/0	2	0.8/1.4	1.5	5		$FCC-ee_{365}$	
							(+1)	(1y S)	D before $2m_{\rm top}$ run)	
ILC	ee	$250~{\rm GeV}$	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3, 14]	ILC_{250}	
		$350~{\rm GeV}$	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC_{350}	
		$500~{\rm GeV}$	$\pm 80 / \pm 30$	1	1.8/3.6	4.0	8.5		ILC_{500}	
							(+1)	(1y SI) after 250 GeV run)	
		$1000~{\rm GeV}$	$\pm 80/\pm 20$	1	3.6/7.2	8.0	8.5	[4]	ILC_{1000}	ee
							(+1-2)	(1–2y S	D after 500 GeV run)	
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC	
		$2M_W$	0/0	2	10	2.6	1			F
		$240~{\rm GeV}$	0/0	2	3	5.6	7			
CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1	1.5	1.0	8	[15]	CLIC ₃₈₀	
		$1.5 { m TeV}$	$\pm 80/0$	1	3.7	2.5	7		$\operatorname{CLIC}_{1500}$	
		$3.0 { m TeV}$	$\pm 80/0$	1	6.0	5.0	8		$\operatorname{CLIC}_{3000}$	
							(+4)	(2y SDs	between energy stages)	
LHeC	ep	$1.3{ m TeV}$	—	1	0.8	1.0	15	[12]	LHeC	
HE-LHeC	ep	1.8 TeV	_	1	1.5	2.0	20	[1]	HE-LHeC	ер
FCC-eh	ep	$3.5{ m TeV}$		1	1.5	2.0	25	[1]	FCC-eh	- -

Christophe Grojean

26

liders Studied

Different level of sophistication (fast versus full simulations, parametric modelling...).

As part of our mandate, we use the data of the different reports as provided, and highlight the important comparison points, without removing/modifying information.

Methodology

We re-analysed of all the input data (mostly σ^*BR for what concerns Higgs physics) in order to provide a fair and apple-to-apple comparison between colliders

Two steps:

1) κ -fit: could be compared to the fits often performed by the various FC collaborations \rightarrow validation of our procedure/code (in particular the treatment of uncertainties and correlations and the combination of ATLAS-CMS data/projections)

2) Global EFT fit

Collect inputs from collaborations (see our report for data used) Likelihood constructed with HEPfit (<u>1910.14012</u>) from:

- SM predictions injected as future experimental measurements
- Errors given by projected uncertainties (experimental, theoretical parametric and intrinsic)

Snowmass Energy Frontier WS, March 31, 2022

Experimental projections

Electroweak precision measurements

Higgs measurements: Circular lepton colliders

Quantity	Current	HL-LHC	FCC-ee	CEPC	I	LC	C	LIC	·			
					Giga-Z	250 GeV	Giga-Z	380 GeV		FCC-ee ₂₄₀	FCC-ee ₃₆₅	CEPC
$\delta m_{\rm top}$ [MeV]	$\sim 500^{a}$	$\sim 400^{a}$	20^{b}	_		17 ^b)		$20-22^{\ b)}$	$\delta\sigma_{ZH}$	0.005	0.009	0.005
					 		 		$\delta \mu_{ZH,bb}$	0.003	0.005	0.0031
δM_Z [MeV]	2.1	_	0.1	0.5	-	—	-	—	$\delta\mu_{ZH,cc}$	0.022	0.065	0.033
$\delta I_Z [MeV]$	2.3		0.1	0.5		—		—	$\delta\mu_{ZH,gg}$	0.019	0.035	0.013
$\delta \Gamma_{Z \to had} [MeV]$	2.0	_	_	_	0.7	_	0.7	_	$\delta\mu_{ZH,WW}$	0.012	0.026	0.0098
$\delta\sigma_{ m had}^0$ [pb]	37	-	4	5	_	—	-	—	$\delta\mu_{ZH,ZZ}$	0.044	0.12	0.051
δM_W [MeV]	12	7	0.7	$1.0(2-3)^{c}$		$2.4^{(d)}$		2.5	$\delta\mu_{ZH, au au}$	0.009	0.018	0.0082
$\delta \Gamma_{W}$ [MeV]	42	_	1.5	3	_	_	_	_	$\delta \mu_{ZH,\gamma\gamma}$	0.09	0.18	0.068
		I			 		 		$\delta \mu_{ZH,\mu\mu}$	0.19	0.40	0.17
$\delta BR_{W \to ev}[10^{-4}]$	150	-	3	3	_	4.2	_	11	$\delta \mu_{ZH,Z\gamma}$	—	—	0.16
$\delta BR_{W \to \mu \nu} [10^{-4}]$	140	-	3	3	-	4.1	_	11	$\delta\mu_{ m vvH,bb}$	0.031	0.009	0.030
$\delta \mathrm{BR}_{W \to \tau \nu}[10^{-4}]$	190	-	4	4		5.2	_	11	$\delta\mu_{vvH,cc}$	—	0.10	—
$\delta \mathrm{BR}_{W ightarrow \mathrm{had}}[10^{-4}]$	40	_	1	1	_	—	_	—	$\delta\mu_{vvH,gg}$	_	0.045	_
$\delta A_{e} [10^{-4}]$	140	_	$ 1.1^{e}$	3.2 ^{<i>e</i>}	5.1	10	10	42	$\delta \mu_{vvH,ZZ}$	—	0.10	—
$\delta A_{\mu} [10^{-4}]$	1060	_	_	_	5.4	54	13	270	$\delta \mu_{\nu \nu H, \tau \tau}$	—	0.08	—
$\delta A_{\tau} [10^{-4}]$	300	_	$3.1^{(e)}$	5.2 ^{<i>e</i>})	5.4	57	17	370	$\frac{\delta \mu_{\nu\nu H,\gamma\gamma}}{2}$	_	0.22	_
$\delta A_{h} [10^{-4}]$	220	_	_	_	5.1	6.4	9.9	40	BR _{inv}	<0.0015	< 0.003	<0.0015
$\delta A_c [10^{-4}]$	400	_		_	5.8	21	10	30				
$\delta A_{\rm FB}^{\mu}$ [10 ⁻⁴]	770	_	0.54	4.6	_	_	_	_				
$\delta A_{\rm FB}^{b}$ [10 ⁻⁴]	160	_	30 ^f	10 ^f)	_	_	_	_				
$\delta A_{\rm FB}^{c}$ [10 ⁻⁴]	500	_	80 ^f)	30 ^f)								
$\delta R_{e} [10^{-4}]$	24	_	3	2.4	5.4	The CE	e 16th Worksh RN, October 1	lop of the LHC F 18, 2019	liggs Cross Section Working G	roup		
$\delta R_{\mu} [10^{-4}]$	16	_	0.5	1	2.8	11	2.2	27				
δR_{τ} [10 ⁻⁴]	22	_	1	1.5	4.5	12	4.3	60				
$\delta R_{h} [10^{-4}]$	31	_	2	2	7	11	7	18				
$\delta R_c [10^{-4}]$	170	_	10	10	30	50	23	56		/£I		-1:
$\frac{\delta \mathbf{R}}{\delta \mathbf{R}} [10^{-31} g]$								0.4		(TUI		CUON
$\delta R_{V} [10]^{0}$						_		9.4		•		
	_	_	0.27	0.5	_	—		_				

Jorge de Blas **INFN** - University of Padova

in our report)

Theoretical Uncertainties

the effect increases in relevance as the measurements become more experimentally precise in the last stages of the future colliders program

- **HL/HE** use S2 uncertainties (theory 1/2 wrt today), including in combinations of HL with other colliders. We also considered S2' scenario (with an extra factor 1/2 for theory and syst.) \rightarrow default scenario for our plots -> most of the improvement of HE-LHC compared to HL-LHC comes from this assumption
- FCC-hh: for production x luminosity a 1% is assumed in the original documentation (accounting) for future improvements)
- **LHeC**: 0.5% production uncertainty
- **Lepton colliders**: intrinsic uncertainties for the $ee \rightarrow ZH$ and $ee \rightarrow Hvv$, estimated to be 0.5% (assuming NNLO EW can be reached)

When the TH uncertainties were not already included in the projections, we simply added nuisance parameters to the predictions with priors given by the corresponding theory uncertainty, and then marginalised over them in the results

Christophe Grojean

Snowmass Energy Frontier WS, March 31, 2022

Will SM theory calculations be enough?

Christophe The 16th Workshop of the LHC Higgs Cross Section Working Group

Jorge de Blas

5, March 31, 2022

Higgs Couplings: Kappa vs EFT

Complementarity between the two approaches

Kappa:

- Close connection to exp. measurements
- Widely used
- Exploration tool (very much like epsilons for LEP)
- Doesn't require BSM theoretical computations
- Could still valid even with light new physics, i.e. exotic decays
- Captures leading effects of UV motivated scenarios (SUSY, composite)
- Main drawbacks: focused on inclusive quantities, not general

(SM)EFT:

- Allows to put Higgs measurements in perspective with other measurements (EW, diboson, flavour...)
- Connects measurements at different scales (particularly relevant for high-energy colliders CLIC, FCC-hh)
- Fully exploits more exclusive observables (polarisation, angular distributions...)
- Can accommodate subleading effects (loops, dim-8...)
- Fully QFT consistent framework
- Assumptions about symmetries more transparent
- Valid only if heavy new physics
- Main drawbacks: assume mass gap with New Physics, not general (no new particle with a Higgs-generated mass)

Christophe Grojean

Kappa Fits

10+2 parameters: кw,z,g, v, vz, t, c, b, т, µ + BRinv + BRunt

- $\kappa_{s,d,u,e}$ only weakly constrained from very rare decays/productions and not included in the fits
- $\kappa_v, \kappa_{vz}, \kappa_g$ are treated as independent effective coupling modifiers
 - alone, low energy colliders, below ttH/tH threshold, are not sensitive to κ_{top}
 - no sensitivity to the signs of κ 's (single top + h could provide such a sensitivity, but not included in our fits)
- Usual framework extended to accommodate Invisible and Untagged decays
 - invisible width: experimentally directly constrained at all future colliders (ZH, VBF $H \rightarrow invisible$)
 - untagged width: h(125)->??. BSM, but also rare SM decays not directly probed by searches
 - Γ_H and untagged are 100% correlated

 $\Gamma_H = \frac{\Gamma_H^{\rm SM} \cdot \kappa_H^2}{1 - (BR_{\rm inv} + BR_{\rm un})}$

$R_{\rm inv} \qquad BR_{\rm u}$	unt include HL-LHC
l at 0 fixed	at 0 no
sured fixed	at 0 no
sured measu	ured no
sured measu	ured yes
	R_{inv} BR_{inv} l at 0fixedsuredfixedsuredmeasuredsuredmeasured

	$\kappa^2 = \nabla$	$ = \frac{\kappa_j^2 \Gamma_j^{\rm SM}}{\kappa_j^2 \Gamma_j^{\rm SM}} $
$\overline{\mathbf{nt}})$	$h_H = \sum_{i}$	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $

Experimental inputs

A circular ee Higgs factory starts as a Z/EW factory (**TeraZ**)

A linear ee Higgs factory operating above Z-pole can also preform EW measurements via **Z-radiative** return

A linear ee Higgs factory could also operate on the Z-pole though at lower lumi (**GigaZ**)

	Higgs	aTGC	EWPO	Top EW
FCC-ee	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom.)	Yes	Yes (365 GeV, Ztt)
ILC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (HE limit)	Yes (Rad. Return, Giga-Z)	Yes (500 GeV, Ztt)
CEPC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom)	Yes	No
CLIC	Yes (µ, σ _{zн})	Yes (Full EFT parameterization)	Yes (Rad. Return, Giga-Z)	Yes
HE-LHC	Extrapolated from HL-LHC	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin ² θ _w)	-
FCC-hh	Yes (µ, BRi/BRj) Used in combination with FCCee/eh	From FCC-ee	From FCC-ee	_
LHeC	Yes (µ)	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin²θ _w)	_
FCC-eh	Yes (µ) Used in combination with FCCee/hh	From FCC-ee	From FCC-ee + Zuu, Zdd	-

Christophe Grojean

The 16th Workshop of the LHC Higgs Cross Section Working Group

Jorge de Blas

dHiggscan one set pfresurise brojetted into fettectivis stiggs couplings afollavide way a basis-independent respect to the SM in with formations ದ Q

 $g_{HX}^{ ext{eff}\ 2} \equiv rac{\Gamma_H o X}{\Gamma_{H o X}^{ ext{SM}}}.$

possible upling ansfo coup! with independent one n the mbh those tion son not 2 \sim 5 eptember 201 CONDE ÉPHC obsé -pQ with OIDO ╢╵┾║ ╢╋┫ ╢┝╋ not phenomenologically the even 0 these near Hid Ċ Ĩ Ĩ the Live ort 4 ⊖ ND ¶it ^{∼,} OIO a lil $\frac{g}{g}$ Ū. then map the effect The single results $t_{\rm O}$ thfits. easier i <u>t</u> report on to illustrate We rel be revisited. are basis and the aTGC is plerfectly from the eq. for to: will sidestep and offer a measure we also add analysis reporting only scenario where physical effects at via THEFT in contributing predictions to connect oarameter, can V mann**ég/d/@**SMEFT M M H operators cients, for $\mathbf{S}\mathbf{C}$ from physical observables, fined 0 H O H O the Dasis per Dansion). added we to ÐM Inere lings. the g^e_R Ê $\overline{\mathbb{C}}$ S however E the undn fermions ದ the res COL dimension dim t 0 f one oaranne couplings are not present Wilson truncating needs 0 **Thich** co $\boldsymbol{\Omega}$ straightforward coupling in the present is, other lormer Information Tree the definition effective **n** to all and 0 constructed and Ve WILL the 1 ecti **TIM** Vel Ð Such Ch eff. ity defined the fill de ticular ticular st **H** th**eff** re**ting** € racti **g**eff ffftrr **& §**1*z* δκν ರ Ore in \geq ofsu (of c simil Dar Juplings natch t nension urbatio diffd compare Improvement wrt. \mathbb{N} HK-LH6 s of th quantities, coëplings; ided in dding narios direc rd the orent n wit also EWP(imia 60 0 tion red <u>G</u>ett Sa Settor BHec ġ₽ff. GPlgg ggs δκ_γ Ē t_{0} \bigcirc Ο

ا% magic threshold

There is life beyond HL-LHC

ECFA Higgs study group '19

Figures of Merit with Respects to HL-LHC

Christoph Open Symposium - Update of the European Strategy for Particle Physics

ECFA Higgs study group '19

Jorge de Blas

larch 31, 2022

Impact of Beam Polarisation (@250GeV)

Christophe Grojean

36

Snowmass Energy Frontier WS, March 31, 2022

J. De Blas et al. 1907.04311

Statistical gain from increased rates

$$-P_{e^+}P_{e^-})\left[1-A_{LR}\frac{P_{e^-}-P_{e^+}}{1-P_{e^+}P_{e^-}}\right]$$

From ee→Zh, A_{LR}~0.15 so $\sigma_{-80,+30} \sim 1.4 \sigma_0$

overall, one could expect O(6%) increased coupling sensitivity

Gain is much higher in global EFT fit since polarisation removes

degeneracies among operators

Polarisation benefit diminishes when other runs at higher energies are added and basically left only with statistical gain

Sensitivity on EW couplings J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

HL-LHC S2 + LEP/SLD ILC 250GeV * 7 @250GeV S CLIC 380GeV CEPC Z/WW/240GeV ILC 250GeV/350GeV CLIC 380GeV/1.5TeV CC-ee Z/WW/240GeV ILC 250GeV/350GeV/500GeV CLIC 380GeV/1.5TeV/3TeV 10^{-1} $P(e^{-},e^{+})=(\mp 0.8,\pm 0.3)$ FCC-ee Z/WW/240GeV/365GeV $P(e^{-},e^{+})=(\mp 0.8, 0)$ 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} $\delta g^{ee}_{Z,L}$ $\delta g^{ee}_{Z,R}$ δg_W^{ev} $\delta {
m g}^{\mu\mu}_{Z,L}$ $\delta g_{Z,R}^{\tau\tau}$ $\delta g^{uu}_{Z,L}$ $\delta g^{uu}_{Z,R}$ $\delta g^{\mu\mu}_{Z,R}$ $\delta g_W^{\mu v}$ $\delta g_{Z,L}^{\tau\tau}$ $\delta g_W^{\tau v}$

Christophe Grojean

Sensitivity on EW couplings J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

Sensitivity on EW couplings J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

- At linear colliders, at high energy: EW measurements via Z-radiative return has a large impact on Zqq couplings
- Improvements depend a lot on hypothesis on systematic uncertainties

Yellow: LEP/SLD systematics / 2 Blue: small EXP and TH systematics

Other Studies Beyond Coupling Fits

no new study, mostly summary/reinterpretation of existing projections

- Higgs mass
- Invisible width
 - diphoton interferences
 - signal strength fit (assuming $|\kappa_V| < 1$ and BR_{unt}=0)
 - off-shell channel
 - direct measurement from Z-recoil at lepton colliders
- Rare decays constraints on light Yukawa's
- Higgs CP
 - hVV: rates and angular distributions
 - htt: angular distributions
 - ttH and tH: rates and angular distributions
 - indirect constraints from EDM

ECFA Higgs study group '19