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Pushing the Frontiers of Collider Physics

Oobs = 2E1%M Z /dq)’n ‘MAB—>12...TL‘2 fobs(q)n)
n—=2

cross section phase space amplitude observable

Opportunity to rethink every ingredient in this formula

Jesse Thaler (MIT) — Machine Learning in Collider Physics



Opportunity to leverage new frameworks to
advance our understanding of (B)SM physics

This Talk: Machine Learning Battel’s Talk:
Moult’s Talk: Conformal Physics (Un-)Naturalness




My (Evolving) Perspective

Collider physics (theory and experiment) has been
irreversibly impacted by the rise of deep learning

The buzz is around “Al”, but we should leverage
analysis strategies from various areas of
mathematics, statistics, and computer science

We have an opportunity to translate aspects of
collider physics into a computational language

In the spirit of Snowmass, looking forward to your ideas and perspectives!
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Collider physics (theory and experiment) has been
irreversibly impacted by the rise of deep learning
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Cue the TFO7 Deep Learning Montage!

Apologies: citations are representative, not exhaustive!

[see HEPML-LivingReview for extensive bibliography]
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https://iml-wg.github.io/HEPML-LivingReview/

Deep Learning for Colliders (TFO07)

Jet Classification
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[e.g. Kasieczka, Plehn, et al., SciPost 2019]
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[e.g. Brehmer, Kling, Espejo, Cranmer, CSBS 2020]
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Parton Distribution Functions
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[e.g. NNPDF Collaboration, JHEP 2022]

Parton Shower Modeling/Tuning
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[e.g. Lai, Neill, Ptoskon, Ringer, arXiv 2020;
see also Andreassen, Feige, Frye, Schwartz, EP|C 2019]


https://arxiv.org/abs/1907.10621
https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2109.14636
https://arxiv.org/abs/2012.06582
https://arxiv.org/abs/1804.09720

More Deep Learning for Colliders (TF07)

Phase Space Integration Amplitude Approximations
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[e.g. Bothmann, JanBen, Knobbe, Schmale, Schumann, SciPost 2020; [e.g. Badger, Bullock, JHEP 2020]

see also Gao, Hoche, Isaacson, Krause, Schulz, PRD 2020]

Pileup Mitigation Deconvolution/Unfolding

Detector-level Particle-level
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[e.g. Komiske, Metodiev, Nachman, Schwartz, ]JHEP 2017] [e.g. Andreassen, Komiske, Metodiev, Nachman, ]DT, PRL 2020;
see also Bellagente, Butter, Kasieczka, Plehn, Rousselot,

Winterhalder, Ardizzone, Kothe, SciPost 2020]
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https://arxiv.org/abs/2002.07516
https://arxiv.org/abs/1707.08600
https://arxiv.org/abs/2001.05478
https://arxiv.org/abs/2001.10028
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2006.06685

“Ok, but what is the machine learning?”

Hmm, I'd like to move away from anthropomorphizing algorithms...
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Space of Analysis Strategies

Machine Learning:
Algorithms based on
learning solutions through
the use of data

Deep Learning:
Algorithms based on
learning parameters of
multi-layer neural networks

In most cases, the machine is learning an approximate solution
to a well-specified optimization problem
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Space of Analysis Strategies

Is linear regression a type of Al?

Machine Learning:
Algorithms based on
learning solutions through
the use of data

Artificial Intelligence:
Algorithms to perform tasks
that are typically associated
with intelligent beings

Deep Learning:
Algorithms based on
learning parameters of
multi-layer neural networks

In most cases, the machine is learning an approximate solution
to a well-specified optimization problem
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Space of Analysis Strategies

Is linear regression a type of Al?

Artificial Intelligence:
Algorithms to perform tasks
that are typically associated
with intelligent beings

Machine Learning:
Algorithms based on
learning solutions through
the use of data

Deep Learning:
Algorithms based on
learning parameters of
multi-layer neural networks

“Physics Intelligence’:
Algorithms to perform tasks
that are typically associated
with physics majors/PhDs
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Is phase space integration a type of Al?

In most cases, the machine is learning an approximate solution
to a well-specified optimization problem
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Progress made not just because of
increased computational power and large datasets...

...but also because we have understood the
structure of the underlying problems

And the structure of many HEP problems are
optimization tasks; more discussion in backup
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~ ws-". - | The buzz is around “Al”, but we should leverage
R analysis strategies from various areas of
mathematics, statistics, and computer science
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Optimal Transport for Collider Geometry

Energy Mover’s Distance = Metric Space of Collider Events
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New insights into high-energy physics facilitated by
advances in mathematics, statistics, and computer science

[Komiske, Metodiey, |DT, PRL 2019; code at Komiske, Metodiev, DT, energyflow.network; open data study in Komiske, Mastandrea, Metodiev, Naik, ]DT, PRD 2020]
[based on Peleg, Werman, Rom, |[EEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele Taskar, GSI 2013]
[flavored variant in Crispim Romao, Castro, Milhano, Pedro,Vale, EP|C 2021; linearized and unbalanced transport in Cai, Cheng, Craig, Craig, PRD 2020, arXiv 2021]
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https://arxiv.org/abs/1902.02346
http://energyflow.network/
https://arxiv.org/abs/1908.08542
https://ieeexplore.ieee.org/document/192468
https://ieeexplore.ieee.org/document/710701
https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/chapter/10.1007/978-3-540-88690-7_37
https://link.springer.com/chapter/10.1007/978-3-642-40020-9_43
https://arxiv.org/abs/2004.09360
https://arxiv.org/abs/2008.08604
https://arxiv.org/abs/2111.03670

Optimal Transport for Collider Geometry

Translating Six Decades of Collider Physics

IRC Safety is smoothness
in the space of events

— € —

Taming infinities Event Shapes

1977
Thrust, Sphericity

[Farhi, PRL 1977]
[Georgi, Machacek, PRL 1977]

1962-1964

Infrared Safety
[Kinoshita, JMP 1962]
[Lee, Nauenberg, PR 1964]

Event shapes are distances
from events to manifolds.

1993

ks jet clustering
[Ellis, Soper, PRD 1993] [
[Catani, Dokshitzer, Seymour, Webber, NPB 1993] [Stewart, Tackmann, Thaler, Vermilion, Wilkason, JHEP 2015]

Substructure resolves
emissions within the jet.

Jets are projections to
few-particle manifolds.

Pileup mitigation moves
away from uniform radiation.

J = argmin EMDg, (€, €N

E'ePy

7(7) = sr'léijglN EMDg(J, €). =argmin EMD(E, £ + pU).

Jet Algorithms Jet Substructure Pileup

202
1997-1998 020

C/A jet clustering
[Wobisch, Wengler, 1998]
[Doskhitzer, Leder, Moretti, Webber, JHEP 1997]

2014-2019

Constituent Subtraction
[Berta, Spousta, Miller, Leitner, JHEP 2014]
[Berta, Masetti, Miller, Spousta, JHEP 2019]

2010-2015
N-(sub)jettiness, XCone

[Stewart, Tackmann, Waalewijn, PRL 2010]
Thaler, Van Tilburg, JHEP 2011]

And many more!

[Komiske, Metodiev, DT, JHEP 2020; timeline by Metodiev; event isotropy in Cesarotti, DT, JHEP 2020]

[Komiske, Metodiev, JDT, PRL 2019; code at Komiske, Metodiey, DT, energyflow.network; open data study in Komiske, Mastandrea, Metodiev, Naik, |]DT, PRD 2020]
[based on Peleg, Werman, Rom, |[EEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, IC|]V 2000; Pele, Werman, ECCV 2008; Pele Taskar, GSI 2013]
[flavored variant in Crispim Romao, Castro, Milhano, Pedro, Vale, EP|C 2021; linearized and unbalanced transport in Cai, Cheng, Craig, Craig, PRD 2020, arXiv 2021]
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https://arxiv.org/abs/2004.04159
https://arxiv.org/abs/2004.06125
https://arxiv.org/abs/1902.02346
http://energyflow.network/
https://arxiv.org/abs/1908.08542
https://ieeexplore.ieee.org/document/192468
https://ieeexplore.ieee.org/document/710701
https://link.springer.com/article/10.1023/A:1026543900054
https://link.springer.com/chapter/10.1007/978-3-540-88690-7_37
https://link.springer.com/chapter/10.1007/978-3-642-40020-9_43
https://arxiv.org/abs/2004.09360
https://arxiv.org/abs/2008.08604
https://arxiv.org/abs/2111.03670

We have an opportunity to translate aspects of
collider physics into a computational language
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@hc Ncw ﬂork @ilucg ’a By Dennis Overbye Nov. 23, 2020

Can a Computer Devise a Theory of
FEverything?

Jesse Thaler (MIT) — Machine Learning in Collider Physics
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https://www.nytimes.com/2020/11/23/science/artificial-intelligence-ai-physics-theory.html

@hc Ncw ﬂork @ilucg ’a By Dennis Overbye Nov. 23, 2020

Can a Computer Devise a Theory of
FEverything?

| loathe this question

Jesse Thaler (MIT) — Machine Learning in Collider Physics
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https://www.nytimes.com/2020/11/23/science/artificial-intelligence-ai-physics-theory.html

@hc Ncw ﬂork @ilucg ’a By Dennis Overbye Nov. 23, 2020

Can a Computer Devise a Theory of
FEverything?

| loathe this question

| love this question

Jesse Thaler (MIT) — Machine Learning in Collider Physics
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https://www.nytimes.com/2020/11/23/science/artificial-intelligence-ai-physics-theory.html

ML for BSM Physics?

E.e. Anomaly Detection

[image from LHC Olympics 2022; see Kasieczka, Nachman, Shih et al., RPP 2021]

What aspects of BSM phenomenology could
be streamlined, systematized, and automated?

Jesse Thaler (MIT) — Machine Learning in Collider Physics
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https://arxiv.org/abs/2101.08320

ML for SM Physics!?

E.g. Open Data / Uncertainty Quantification
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[plots from Apyan, Cuozzo, Klute, Saito, Schott, Sintayehu, ]INST 2020]

Can we more tightly integrate theory and
experiment to future-proof analyses?
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https://arxiv.org/abs/1907.08197

Machine Learning in Collider Physics

Collider physics (theory and experiment) has been
irreversibly impacted by the rise of deep learning

The buzz is around “Al”, but we should leverage
analysis strategies from various areas of
mathematics, statistics, and computer science

We have an opportunity to translate aspects of
collider physics into a computational language

In the spirit of Snowmass, looking forward to your ideas and perspectives!
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Backup Slides
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E.g. Likelihood Ratio Trick

Key example of simulation-based inference

Goal: Estimate p(x) / q(x)
Training Data:  Finite samples P and Q

Learnable Function: f(x) parametrized by, e.g., neural networks

Loss Function(al): [ = < log f > + <f >Q
L
Asymptotically: argmin L = M Likelihood ratio
f(z) q()
— ?;r)l L= / dz p(z)log % Kullback—Leibler divergence

[see e.g. D’Agnolo,Wulzer, PRD 2019; simulation-based inference in Cranmer, Brehmer, Louppe, PNAS 2020;
relation to f-divergences in Nguyen,Wainwright, Jordan,AoS 2009; Nachman, JDT, PRD 2021]

27
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https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

Asymptotically, same structure as Lagrangian mechanics!

Action: L = /da: L(x)

Lagrangian:  L(z) = —p(z)log f(x) + q(x)(f(x) — 1)

oL _
of

Requires shift in focus from solving problems to specifying problems

Euler-Lagrange: 0 Solution: f ()



https://arxiv.org/abs/1806.02350
https://arxiv.org/abs/1911.01429
https://arxiv.org/abs/math/0510521
https://arxiv.org/abs/2101.07263

Machine Learning Ingredients

Many HEP theory tasks can phrased as ML optimization
. E.g. classification, regression, generation, ...
Wel I'SPeC|ﬁ ed LOSS With implicit or explicit regularization

Real or synthetic, fixed or dynamic

Rel iable Tra-i n | ng Data— Labeled, partially labeled, or unlabeled

Linear/logit function, neural network,

Lea 'n ab I S F un Ctl on normalizing flow, other parametrized form, ...

Physics input essential for robust usage of these tools,
but interdisciplinary training also valuable

Jesse Thaler (MIT) — Machine Learning in Collider Physics
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E.g. Neural Resampling for MC Beyond LO

*
.

Sample with wrong physics Sample with correct physics
but some negative weights

but all positive weights
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MC@NLO: large
weight cancellations
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v Weights
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desired distribution
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[Nachman, JDT, PRD 2020; inspired by Andersen, Gutschow, Maier, Prestel, EPJC 2020]
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Resampling recovers
desired uncertainties

800+ Initial Weights

¢ Neural Resampler, K=1
——- Neural Resampler, Optimal K
600+ 1
MG5 aMC + Pythia 8
5y pp - tf, NLO QCD
™ 400} T L
1 [ J—
I 1
] . )
200(. : - o __1__;
0

0O 1 2 3 4 5 6 7 8
Number of ISR jets

Using custom ML strategy
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https://arxiv.org/abs/2007.11586
https://arxiv.org/abs/2005.09375

E.g. Detector Unfolding

: Multi-dimensional unbinned detector corrections
OmniFold . . o o
via iterated application of likelihood ratio trick

Detector-level Particle-level
. Data
S
Sl
B
7 \‘A
Step 1: Step 2: Use ML to compute
Reweight Sim. to Data Reweight Gen. I"eweighti ng faCtO s
v Vp—1 % Wn Un—1 &% Un
o 5 5 u eights 5
E Simulation ﬂ; Generation
=l ] &2 .
% Push Weights

—— —

[Andreassen, Komiske, Metodiev, Nachman, |DT, PRL 2020; + Suresh, ICLR SimDL 2021;
Komiske, McCormack, Nachman, PRD 2021; see unfolding comparison in Petr Baron, arXiv 2021]
[see alternative in Bellagente, Butter, Kasieczka, Plehn, Rousselot, Winterhalder, Ardizzone, Kothe, SciPost 2020]]
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https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448
https://arxiv.org/abs/2105.09923
https://arxiv.org/abs/2104.03036
https://arxiv.org/abs/2006.06685

Back to the Future with ALEPH Archival Data
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[talk by Badea, ICHEP 2020; cf. ALEPH, EPJC 2004]
[see also Badea, Baty, Chang, Innocenti, Maggi, McGinn, Peters, Sheng, DT, Lee, PRL 2019; HI, DIS2021]



https://indico.cern.ch/event/868940/contributions/3814556/
https://doi.org/10.1140/epjc/s2004-01891-4
https://arxiv.org/abs/1906.00489
https://www-h1.desy.de/psfiles/confpap/DIS2021/H1prelim-21-031.pdf
https://arxiv.org/abs/1911.09107
https://arxiv.org/abs/2105.04448
https://arxiv.org/abs/2105.09923
https://arxiv.org/abs/2104.03036
https://arxiv.org/abs/2006.06685

Theoretical Priors = Network Architectures

Pixelized Calorimetry Hierarchical Showers
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[review in Kagan, arXiv 2020] [e.g. Brehmer, Macaluso, Pappadopulo,

Cranmer, NeurlPS 2020]

Lorentz Equivariance Lund Plane Emissions
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[e.g. Bogatskiy, Anderson, Offermann, [e.g. Dreyer, Qu, JHEP 2021]

Roussi, Miller, Kondor, arXiv 2020]
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Pairwise Interactions

Es

E1
W
Es Ee

[e.g. Moreno, Cerri, Duarte, Newman, Nguyen,
Periwal, Pierini, Serikova, Spiropulu,Vlimant, EPJC 2020]

Infrared and Collinear Safety

[e.g. Komiske, Metodiey, |DT, JHEP 2019;
see also Dolan, Ore, PRD 2021;
Konar, Ngairangbam, Spannowsky, [HEP 2022]
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https://arxiv.org/abs/2012.09719
https://arxiv.org/abs/2011.08191
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/2006.04780
https://arxiv.org/abs/2012.08526
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2012.00964
https://arxiv.org/abs/2109.14636

Wasserstein Elsewhere in HEP

Generative Modeling BSM Characterization
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[Erdmann, Geiger, Glombitza, Schmidt, CSBS 2018; Erdmann, Glombitza, Quast, CSBS 2019; [Cesarotti, Reece, Strassler, JHEP 2021, arXiv 2020]
Chekalina, Orlova, Ratnikov, Ulyanov, Ustyuzhanin, Zakharov, CHEP 2018]

Estimated Simulation/Unfolding Jet Classification

OTUS encoder-decoder: Z - X Ground truth: z— x

1.0 1

0.8 1

0.6 1

044 Signal: W
Background: QCD

= 4
0.2 KNN (AUC=0.845)
—— SVM (AUC-0.869)
00] — LDA(AUC=0.704)
400 500 600 700 800 0 100 200 300 400 500 600 700 800 00 0'2 04 0'6 08 10
< Z Signal Efficiency
[Howard, Mandt, Whiteson, Yang, arXiv 2021] [Cai, Cheng, Craig, Craig, PRD 2020]
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https://arxiv.org/abs/1802.03325
https://arxiv.org/abs/1807.01954
https://arxiv.org/abs/1812.01319
https://arxiv.org/abs/2008.08604
https://arxiv.org/abs/2101.08944
https://arxiv.org/abs/2009.08981
https://arxiv.org/abs/2011.06599

E.g. Thrust

How dijet-like is an event?

t(£) = min EMDy(E,&")
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(using =2 EMD variant)

[Komiske, Metodiev, DT, JHEP 2020]
[Brandt, Peyrou, Sosnowski, Wroblewski, PL 1964; Farhi, PRL 1977; ALEPH, PLB 1991]
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New! Event Isotropy

How isotropic is an event?
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Probability Density
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y ) Event Isotropy
————— 97

— N=10, AUC = 0.997 -
Yo, — N=25,AUC = 1.000
___ N=50, AUC = 1.000 |

02 04 06 08

[Cesarotti, |DT, JHEP 2020;
see also Cesarotti, Reece, Strassler, JHEP 2021]
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Other Examples from My Group’s Research

Quark/Gluon Definitions Kinematic Decomposition
via Blind Source Separation via Graph Theory

Leafless Multigraphs

2= ) b ST Aot

Gy ; ! 2

jZﬁZ m i i g
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PEF Y FEES ;

oy rry. N N
T err O i ‘<Q>’

13 157 306 181071

SHES 77/ ¥ | o eroem oz

16 14150278 15641159

[Komiske, Metodiev, DT, JHEP 2018; [Komiske, Metodieyv, |DT,
Brewer, DT, Turner; PRD 2021] JHEP 2018, PRD 2020]

New insights into high-energy physics facilitated by
advances in mathematics, statistics, and computer science

(and vice versal)
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Reasons to be Wary

“A Framework for Understanding Unintended Consequences of Machine Learning”

world population dataset
. @
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/' ~—_selection ":“ | _ment > ™| train/test split
data REPRESENT- MEASURE-

ATION BIAS

selection
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—
eval

benchmarks
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human interpretation
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benchmarks

(b) Model Building and Implementation

. Historical bias arises when there is a misalignment be-

tween world as it is and the values or objectives to be
encoded and propagated in a model. It is a normative con-
cern with the state of the world, and exists even given per-
fect sampling and feature selection.

. Representation bias arises while defining and sampling

a development population. It occurs when the develop-
ment population under-represents, and subsequently fails
to generalize well, for some part of the use population.

. Measurement Bias arises when choosing and measur-

ing features and labels to use; these are often proxies for
the desired quantities. The chosen set of features and la-
bels may leave out important factors or introduce group-
or input-dependent noise that leads to differential perfor-
mance.

. Aggregation bias arises during model construction, when

distinct populations are inappropriately combined. In
many applications, the population of interest is heteroge-
neous and a single model is unlikely to suit all subgroups.

. Evaluation bias occurs during model iteration and evalu-

ation. It can arise when the testing or external benchmark
populations do not equally represent the various parts of
the use population. Evaluation bias can also arise from the
use of performance metrics that are not appropriate for the
way in which the model will be used.

. Deployment Bias occurs after model deployment, when

a system is used or interpreted in inapppropriate ways.

For HEP, “bias” = “systematic uncertainty”
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[h/t David Kaiser, MIT SERC; Suresh, Guttag, arXiv 2019]
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