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Importance of the top quark mass measurement

* This is important to understand if vacuum is stable or unstable

« |If there is no new physics up to very high scales, then the vacuum itself might
not be stable

« Determines the fate of the universe

* We can constrain Standard Model parameters by comparing top, W, and
Higgs boson mass measurements.

* Perform precision electroweak fits to probe electroweak symmetry
breaking
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How to measure top quark mass

* Direct measurement of the decay products of the top quark (not well
understood)

* Scanning through beam energies is not possible with proton-proton beam,
so reconstruct top-pair invariant mass (very well understood theoretically)

Direct top mass measurement
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An introduction to our study

* Generate ttbar events at NLO using Madgraph
« Obtain PDF weights for CTI8NLO PDF set from Madgraph
« Don’t decay the top, and look at the best-case scenario

* Calculate y? of m't between nominal and different mass points
using PDF uncertainties from CT18 as the only uncertainty

* Perform an update to the global PDF fit using pf and use the
resulting mt* PDF uncertainties to calculate y? of mtt
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Why incorporate Parton Distribution Functions?

* Most recent top pole mass studies have the highest contribution to
their overall uncertainty being the PDF uncertainty.

« About 5% uncertainty on the total cross-section

« Gluon PDF at large x and large scale p
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A brief introduction to ePump

 ePump is a tool that allows the user to see the impact that new data
will have on PDF sets without performing the large global fit

« ePump runs within seconds compared to a global fit which takes much more
time (several hours at least)

« ePump assumes eigen directions don’t change, just their amplitudes
* To update the PDFs, you need data files and theory files

* For a particular observable, you need the theory file that contains the
calculated observable from the best fit and each error PDF (for us this
comes from Madgraph calculations)
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Madgraph event generation

We change the top mass in Madgraph and generate 10 million events

for each top mass

Data sets were generated with top masses from 171 GeV to 174 GeV in

0.25 GeV increments

We then do this for proton-proton beam energies of:

8 TeV — To compare with previous studies

13 TeV — To benchmark what is possible with Run 2 data

13.6 TeV — To see what is possible with Run 3 data

14 TeV — To see what is possible with the high luminosity LHC
100 TeV — To see what is possible with the FCC-hh
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ePump input

* To run ePump, we must reformat generated plots from Madgraph into
ePump .theory and .data files
* Theory is set to nominal 172.5 GeV top mass distribution

« “Nominal” corresponds to the PDF best-fit

» Data (in our case pseudo-data) is set differently for each mass point
« Each pseudo-data distribution is the nominal theory distribution of that mass point
« Here we set statistical error and correlated systematic error to O

« Correlated systematic error is set to 1%; future studies will change this to 5%, 10%
and 15%
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ePump output
* ePump will output many things including the updated PDFs

 We are interested in the updated PDF error of the mtt distribution
* For each top mass, we run ePump and extract the updated PDF errors

« These updated uncertainties then increase the calculated y? values which
constrain the top quark mass
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m(tf) with PDF Error Distributions

8 TeV, m=172.5 GeV
with CT18NLO uncertainties

¢ m(tf) with PDF Error Distributions

13 TeV, m=172.5 GeV
with CT18NLO uncertainties
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)(2 Calculations x2 for for all Energies
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Rapidity distribution - n®
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Pseudo Data — pif with small rapidity
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Updated PDF errors from ePump

ptt Relative Errors
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mtt Relative Errors
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Updated y# Calculations

* The updated XZ calculations have the Updated x2 for for all Energies
same general shape, but have increased e
leading to a smaller top mass uncertainty ~ *™
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Outlook

* A few things remain under consideration:

« How do the results change if we increase the pseudo-data systematic error to be
5%, 10% or 15%7?

« Smear the data to replicate previous studies at 8 TeV, and then use the same
smearing parameters to extrapolate to higher CM energies

e Currently in progress
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Executive Summary

This whitepaper proposes a way to reduce the top quark mass with
upcoming improvements to the LHC and the future FCC-hh collider. Since
the largest uncertainty of the top quark mass comes from the PDF
uncertainty, top quark mass measurements can be improved by
simultaneously updating the PDF best fit while fitting the top quark mass.
This uncertainty of the top quark can be reduced by up to 20% by doing

this.
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Backup
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Variables that can be changed

Observable in the fit:
- mtt, ptt nt, 2D fit

Number of bins

Bin placement

Uncertainty in each bin

Variance of the smearing
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