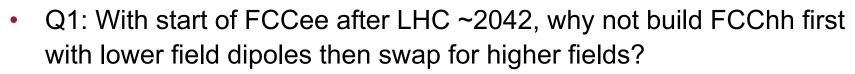
Agora 2 Summary: Circular e⁺e⁻ Colliders

Moderators: John Seeman (SLAC), Sarah Eno (UM)

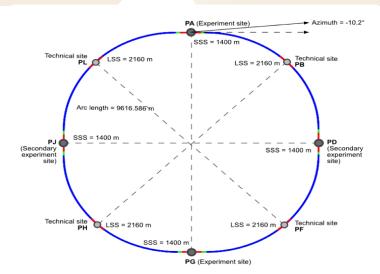
April 1, 2022

Agora 2 Agenda on Circular e⁺e⁻ Colliders (January 19)

3:00 PM → 3:05 PM	Welcome & Introduction
0.00 FW	Speaker: Sarah Eno, John Seeman
	Agora 2 Introductio 📄 Agora2_Intro.mp4 🔗 Link to Questions G
3:05 PM → 3:20 PM	Physics at Circular e+e- Colliders
	Speaker: Alain Blondel (DPNC Université de Genève)
	Agora2_Physics.mp4 📴 Blondel-FCC-Physi
3:20 PM → 3:35 PM	Future Circular Collider (FCC-ee)
	Speaker: Frank Zimmermann (CERN)
	Agora2_FCC-ee.mp4
	N Agolaz_roo ce.mp+
3:35 PM → 3:50 PM	Circular electron-positron Collider (CepC)
	Speaker: Jie Gao (IHEP)
	Agora2_CEPC.mp4
0.50 PM	Orrell Orreles Onliders (LED2 ENAL Ore Eller)
3:50 PM → 4:05 PM	Speaker: Eliana Gianfelice (Fermilab)
	Agora2_Lep3andFn 🔑 agora_talk.pdf
4:05 PM → 4:20 PM	ERL-based e+e- colliders
	Speaker: Vladimir Litvinenko (Stonybrook University)
	Agora2_ERL.mp4 🛃 Aurora2_Litvinenko
4:20 PM → 5:00 PM	Q&A and Moderated Discussion
	Speaker: John Seeman, Sarah Eno
	Agora2_Discussion 🏳 Snowmass Agora 2

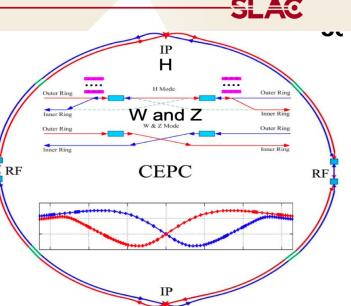

Detailed Q&A responses:

https://docs.google.com/document/d/1jgPcDDpxzwMbdrvqA4KnNC58IDIQmLz_dxRDPu3VUuM/edit?usp=sharing


SLAC

FCCee Collider

- CME = 91 to 365 GeV.
- Length = 92 km around Geneva.
- Lumi = 180. to 1.25 x10³⁴.
- Adv: Mostly proven technology, >50 yr.
- Adv: Low energy inj on the CERN site.
- Dis: High beam currents at the Z
- Dis: 11 GeV SC RF at ttbar for ring + inj.



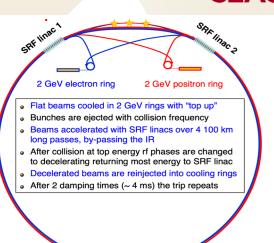
- A1: Fits the evolution of physics at CERN. Even lower field SC dipoles will take considerable time to develop and the swap time is long.
- Q2: How to reduce the costs?
- A2: More efficient RF power sources, minimize tunneling costs.

CEPC e⁺e⁻ Collider

- CME = 91 to 365 GeV.
- Length = 100 km+ inj at a new location.
- Lumi = 115. to 0.5×10^{34} .
- Adv: Mostly proven technology, > 50 yr.
- Adv: High technology dev'mt underway.
- Dis: High beam currents at the Z.
- Dis: 10 GeV of SC RF for ring and inj.
- Q1: Does IHEP have a design with 5 kW HOM in cavities?
- A1: HOM damped SC cavities prototypes are in manufacturing.
- Q2: How to reduce the costs?
- A2: More efficient RF power sources and, perhaps, lower tunneling, staffing, and material costs in China.

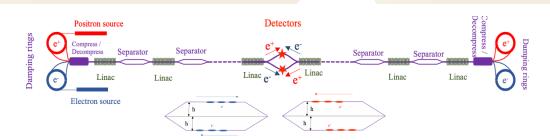
FNAL Site Filler e⁺e⁻ Collider

- CME = 91 to 240 GeV.
- Length = 16 km + injector at FNAL.
- Lumi = 6.3 to 1.0×10^{34} .
- Adv: Mostly proven technology, > 50 yr.
- Adv: Site exists.
- Dis: Strong synchrotron radiation+power.
- Dis: Early in design phase.


- Q1: Can a low emittance lattice (light sources?) (other than FODO) and adding crab waist schemes raise the luminosity and reduce the beam currents along with the needed wall power?
- A1: Other lattices and IR designs are being considered.
- Q2: How to reduce the costs?
- A2: Make a power efficient design by minimizing the resulting synchrotron radiation and thus the required RF power sources.

CERC: Circular ERL e⁺e⁻ Collider

- CME = 91 to 600 GeV.
- Length = 100 km + injector.
- Lumi = 94. to 4.4×10^{34} .
- Adv: Mostly proven technology, > 50 yr.
- Adv: Recycling beam power, e⁺, e⁻.
- Dis: Efficient particle recovery needed.


- Q1: Can (up to) three IRs be installed in one straight section?
- A1: Multiple IRs with crab waist designs are under consideration.
- Q2: How to reduce the costs?
- A2: Minimize costs for the large SC RF system, the four ring tunnel transport, and consecutive adjacent IRs.

ReLiC: Recycling Linear e⁺e⁻ Collider

-SLA

- CME = ~91 to ~3 TeV.
- Length = 20 to 360 km.
- Lumi = 2.1 to 66. $\times 10^{34}$.

- Adv: Extendable accelerator from Higgs to TeV.
- Adv: Energy, e+, and e- recovery.
- Dis: Careful particle recovery after strong beam-beam interaction.
- Dis: HOM-beam interactions in SC cavities.
- Q1: How strong can the beam-beam disruption be?
- A1: Somewhere between a traditional linear collider and circular rings.
- Q2: How to reduce the costs?
- A2: Minimize RF power generation sources and chicane lengths.

Circular e⁺e⁻ Collider Summary

- 1) Circular colliders have 50+ years of development.
- 2) Long tunnels are needed to reduce SR power.
- 3) Almost all of the needed accelerator physics will be tested soon in SuperKEKB and later in the e⁻ ring of EIC.
- 4) CW damped SC RF at high powers and high beam currents need development and real life demonstrations.
- 5) Strong R&D efforts are crucial in the next few years.