New Muon Facility at FNAL

R. Bernstein (for the organizers) Jan 2022

Over-overview

- Rare and Precision and Accelerator Frontiers have organized a series of "agora"
- We start with four RPF-oriented sessions (physics case):
 - Two on a CLFV muon program; today is the first
 - One on other muon ideas, g-2, muonium-antimuonium, storage ring EDMs
 - One on Accelerator-based DM
- Accelerator Frontier-oriented session
 - discussing the accelerator technology, new machines, etc.

CLFV Muon Program Overview

• A single facility that does the major CLFV muon channels

•
$$\mu^- N \to e^- N, \mu^+ \to e\gamma, \mu^+ \to 3e$$

- μ^- required for conversion, μ^+ for decay
- Exploits PIP-II and grows with Booster Upgrade
 - Adopt next-generation ideas to reach $\mathcal{O}(10^{-19})$ on Au for muon-to-electron conversion
 - Z-dependence is a discriminator among physics models
 - x100 improvement for $\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$
- All experiments reaching similar mass range with different physics sensitivities; can pin down new models with multiple measurements
 R. Bernstein (FNAL)
 3
 New Muon CLFV Program

Existing Work on these Ideas

- A lot of thought has already been done:
 - HiMB: <u>https://arxiv.org/pdf/2111.05788.pdf</u>
 - Limiting $\mu \rightarrow e\gamma$: <u>https://www.mdpi.com/2218-1997/5/1/27</u>
 - PRISM/PRIME: <u>https://indico.fnal.gov/event/46669/</u> <u>contributions/203149/attachments/</u> <u>138299/173056/201210_PRISM_sato.pdf</u>
 - Snowmass 2013 on Muon-Electron Conversion: <u>https://</u> arxiv.org/pdf/1307.1168.pdf
 - Potential Muon Campus & Storage Ring Experiments, May 2021, <u>https://indico.fnal.gov/event/48469</u>

Muon-to-Electron Limitations

- Limit of previous best experiment (SINDRUM-II) was radiative pion capture, $\pi^- N \to \gamma N^*, \gamma \to e^+ e^-$
 - PSI beam is almost continuous (20 ns)
 - these π^- also make our μ^- and can't time-separate them in a continuous beam, and therefore can't improve much past SINDRUM-II
 - *pulsed* beam to take advantage of short π^- lifetime

5

Muon-To-Electron Opportunities

- There is an advantage to using high-Z materials!
- But these have short lifetimes, within the activity from the beam pulse (< 200 ns)
- Can't do an experiment!

Decay Experiments

- MEG-II and Mu3e ($\mu \rightarrow e\gamma$ and $\mu \rightarrow 3e$)
 - want as continuous a beam as possible
 - backgrounds from accidentals go as Intensity²
- Experiments hit limits at $\mathcal{O}(10^{10})\mu^+$ /sec (Renga)
 - can obtain few 10^9 at PSI with HiMB (Kiselev)
 - can get > 10^{10} /sec at PIP-II

Best of Both Worlds: Muon Storage Ring

- Conversion Experiments:
 - If we could make a pure muon beam with a storage ring, and hold them until pions decay, then we could
 - eliminate radiative pion capture
 - eliminate beam pulse activity
 - allowing us to look at much higher intensities at high Z
- Decay Experiments: use same rings and choose time structure
- Single community of > 400 physicists for FNAL Muon Campus

R. Bernstein (FNAL)

8

Three Ingredients

- We need a compressor ring to rebunch PIP-II beam to give us the right time structure (Prebys)
- Mu2e solenoid is at 8 kW; Mu2e-II at 100 kW. We need to go up and target primary beam in a solenoid at higher beam power (Lynch)
- We need a small muon storage ring (FFA, Pasternak) to
 - hold muons and let pions decay
 - make a pure, cold muon beam to look at high Z

1 MW target in a Solenoid

- We know how to build 1 MW targets (neutrino program)
 - We have thought about horn beams (NuSTORM)
- But 1MW in a superconducting solenoid presents unique challenges
 - needed for muon collider
 - this program could be a test bed/existence proof

Intermediate Plans

- FFA will produce pure cold muon beams of either sign for either conversion or decay experiments
 - Current design will alternate μ^+ and μ^- experiments
 - is it possible to use FFA for μ^+ and μ^- at once? then could run decay experiments and conversion experiments in same calendar period.
 - 10¹⁰ useful muons/sec can be obtained; MEG technique limited there by accidentals in any known method
- Initial design at 1MW limited by power deposition into superconducting solenoids (requires R&D!)
 - FFA at 100 kW (x10 Mu2e) still groundbreaking since we can use high-Z targets

Experiment Issues

- Decay Experiments: (Renga)
 - in $\mu \rightarrow e\gamma$ the next step may be to convert the photon for forming a vertex and tracking, vs. calorimetric γ measurement in MEG/MEG-II
 - lose rate since you need a thin converter
 - but PIP-II/Booster upgrades can provide more than 10¹⁰ useful muons/sec and that makes up for the loss
 - will learn about PSI HiMB program
 - in $\mu \to 3e$ we may be able to combine with $\mu \to e\gamma$ if we are tracking three e^+/e^-

Experiment Issues

- Conversion Experiments (Echenard)
 - with an FFA, remove beam backgrounds and radiative pion backgrounds that inspired Mu2e technique
 - decay-in-orbit backgrounds require better detector resolution
 - dominant background will be cosmic-ray induced events, which can be controlled with veto and overburden (and much better than in Mu2e)

CLFV Muon Plan

- We have written a Snowmass LOI
 - <u>https://www.dropbox.com/s/</u> <u>36b3gzfnkukcqgg/clfvLOI.pdf?dl=0</u>
- Will turn this into a white paper
- Goal is to have P5 say that this facility should be part of the US program and R&D for design should be funded

Summary

- CLFV is one part of an extensive, world-class muon program
- These are kickoff talks to stimulate discussion and explore options
- CLFV and other muon experiments along with DM fit together in a coherent program
- And Accelerator Frontier will have a summary session on the machine issues