

Daniela Kiselev :: ASA/GFA :: Paul Scherrer Institut

PSI: Meson production target stations and upgrade to HIMB

Muon Properties and Related Topics II, FNAL-online, 21.1.2022

Accelerator Facilities at PSI

UCN

SINQ Spallation Neutron Source

SWISSFEL

5.8 GeV

p-Therapy (PROSCAN) Comet: 250MeV, <1μA

Central control room

Swiss Light Source (SLS) 2.4GeV, 400mA High Intensity Proton Accelerator (HIPA) 590 MeV, max. 2.4mA

SINQ

The PSI Proton Accelerator Facilities

HIPA (High Intensity Proton Accelerator) PROSCAN (Proton therapy): since 2007

- CW (50.63 MHz), 590 MeV,
- up to 2.4 mA(1.44 MW)
- 2 meson production targets
- 7 secondary beam lines
- SINQ and UCN spallation source

Comet: superconducting cyclotron CW, 250 MeV, up to 1 µA protons medical treatment:

3 Gantries, 1 Eye Cancer Treatment Station Irradiation Station: PIF

Target E:

- Target M: πM1: 100-500 MeV/c Pions πM3: 28 MeV/c Surface Muons
- π E1: 10 500 MeV/c High Intensity Pions und Muons
- μE1: Polarized Muon Beam
- **πE3: 28MeV/c Surface polarized Muons**
- μE4: 30 100 MeV/c High Intensity Polarized Muons
- πE5: 10 120 MeV/c High Intensity Muons

PAUL SCHERRER INSTITUT

μ/π rates

	PiM1	PiE5	PiE1	PiE3	PiM3	MuE4	MuE1
Target	м	E	E	E	М	E	E
Particle Type	π/e/μ / p	μ/π	π/μ / p	μ, π	μ	μ	μ (cloud)
Momentum Range	10-500 MeV/c (max 300 MeV/c for positive particles)	20-120 MeV/c	10-500 MeV/c ustream ASK 10-120 MeV/c downstream ASK	μ:10-40 MeV/c π: 50 – 250 MeV/c	10-40 MeV/c	10-40 MeV/c	60-120 MeV/c
Typical Momentum	15-300 MeV/c	28-85 MeV/c	PP: 10-50 MeV/c μSR: 28 MeV/c Irrad: 300 MeV/c	28 MeV/c	28 MeV/c	28 MeV/c	60-125 MeV/c
Max Rate [mA ⁻¹ s ⁻¹]	@ 350 MeV/c π+ [:] :2x10 ⁸	@120MeV/c π ⁺ :2x10 ¹⁰ μ ⁺ :5x10 ⁸	@ 300 MeV/c π ⁺ :4x10 ⁹	μ ⁺ :3x10 ⁷ π ⁺ :2x10 ⁹ @ 170 MeV/c	µ⁺:3x10 ⁶	µ⁺:4x10 ⁸	@ 300 MeV/c μ ⁻ :6x10 ⁷
Typical Use	Particle Physics Test Experiments, Detector/Mater ial Irradiation	Particle Physics Experiments	μSR Dolly Particle Physics Experiment, Detector Irrad.	µSR HAL 9500 (High Field)	μSR GPS and LTF	μSR LEM Facility	μSR GPD Facility
					γ		
	Particle physics: (CHRISP facility)			μSR (Muon Spin Rotation), SμS (Swiss Muon Source)			

Challenges for meson production targets

• Power deposition:

at 2.4 mA, 590 MeV protons ~ 50 kW on Target E

- \rightarrow cooling
- \rightarrow high temperature resistant material
- \rightarrow thermal stress
- Radiation damage:
 - \rightarrow embrittlement
 - \rightarrow deformation (also due to heating)
 - ightarrow loss of conductivity

Approach:

- <u>distribute power:</u> rotating wheel with 1 Hz → needs bearings
- <u>cooling by radiation:</u>
 - independent of conductivity
 - local shielding (Cu) is cooled by water

Target E

Challenges for meson production targets

Critical components: Bearings

• Ball bearings:

No grease as lubrication! \rightarrow brittle due to hard irradiation so called radiation hard grease does not help \rightarrow proofed

in use since ~2002:

Balls Si₃N₄, GMN, Germany Coating: MoS_{2} , Ag for ring & cage 1 -2 x exchange/year $\leftarrow \rightarrow$ Graphite wheel lasts much longer: ~ 4Years (39 Ah record) in test this year:

Shun Makimura (JPARC)

Balls stainless steel + WS₂ blocks Koyo, Japan Test (without radiation): > 420 days <u>In beam 2021, no change!</u>

Purpose: Beam centering on the 6 mm rim of Target E

Idea:

Modulation of the beam current measurement (MHC5) after Target E

 \rightarrow Strength of the signal is a measure for the deviation of the beam from center

Grooves inside and outside

- with different frequencies:
 114 Hz and 138 Hz
- to distinguish beam left and right from center
- different depths:0.3mm, 0.5mm, 0.7mm, 0.9mm
- to find compromise between losses and signal

- Very sensitive method of ~factor 10 in signal change!
- Much more sensitive than transmission T = MHC5/MHC4

Results with slanted target type

- Significant increase of surface muon rate
- 1. Measurement (2019):
 30 50 % increase

- Increased safety margin for "missing" TgE with the proton beam
- → pencil beam to the neutron spallation target has to be avoided (several diagnostics in place)

Combining grooves and slanted

& KOYO bearing

planned for beam period starting May 2022

Target M:

Mean diameter: 320 mm Target thickness: 5.2 mm Target width: 20 mm Graphite density: 1.8 g/cm³ Beam loss: 1.6 % Power deposition: 2.4 kW/mA Temperature: 1100 K Irradiation damage: 0.1 dpa/Ah Rotational Speed: 1 Hz Current limit: 5 mA Life time: up to several years up to ~ 60 Ah ~ 6 DPA

@ 350 MeV/c[:] π+[:]:2x10⁸/(s mA)

Target: graphite

2 mm thick rim

 \rightarrow effective 5 mm (due to angle),

cooled by thermal conduction

no problems with bearings!

- short wide solenoids with large fringing field in high radiation area
- close distance to the target +/- 250 mm
- thicker target (20 mm instead of 5 mm) \rightarrow higher losses & activation
- slanted target type large rim (> 100 mm)
 - large rotating wheel for cooling
 - small angle relative to beam
- beamline optimized for large transmission of surface muons

New target station & proton beamline

guide the beam to the target

PAUL SCHERRER INSTITUT

- pillow seal far away from high radiation zone
- collimator setting optimised using BD-SIM regarding •
 - sensitivity to beam misalignment
 - protection of 1. triplet
 - proton beam transmission
- 2 conical heat shields to protect magnets ٠ from the hot target (1500 °C) (Cooling requires more considerations)

- Target and 2 capture solenoids in 1 vacuum chamber:
 no space for additional wall or pillow seal keeping +/- 250 mm from beamline
- all vacuum chambers are cooled by water
- exchange of solenoid in vertical direction with (new) exchange flask

Due to tight space limits:

beam passes behind the target through the cooling plate

design & rotation mechanism similar to target E

To avoid beam on the Cu cooling plate:

- tungsten collimator inside
- isolated for current measurement
 - \rightarrow fast interlock
- 4-segment aperture for centring
 → fast interlock

2 wheel version (V2) is preferred. Reason: Wheels are flat and thin. Graphite is more stable, because not so many layers are crossed.

slanted:

protons hit the target under small angle: 10°

- effective length: 20 mm
- 100 mm rim
- target thickness: 3.5 mm
- 7 10 % loss in muon rate

Wheel very similar to Target E as back-up option

Exchange of the high-activated components

Exchange flask:

- 45 t, shielded with 40 cm steel
- remotely operated
- used for > 15 components

Constraint for insert:

610mm x 480mm (inner cross section)

"Bridge":

- contains contamination protection
- door to close lifting hole
- sticks for positioning of the flask

Working platform:

- ~ ~ 2m above beamline, shielded with steel
- Accessible after removing 3 4 m of concrete

For capture-solenoid:

Much simpler exchange flask planned but with large cross section (1000mm x 800mm)

Solenoid Beamline

IMPACT = TATTOOS & HIMB

Isotope and Muon Production with advanced cyclotron and target technology

R, Eichler, D. Kiselev, A. Knecht, N. van der Meulen, A. Koschik

HIMB: High-Intensity Muon Beams is part of IMPACT

TATTOOS: Targeted Alpha Tumour Therapy and Other Oncological Solutions Producing radioisotopes with 590 MeV protons (100 μ A) for cancer treatment & diagnostics in quantities needed for clinical studies (no commercial production).

Aim: Support by the Swiss Roadmap of Infrastructure

Final decision: 2024 Installation: 2027 Budget: 70 MCHF

Challenging environment

presentTgM

He-liquefier (6 m above ground)

- Dismantling and assembling of >1000 shielding blocks
- Target block highly activated (~ Sv/h)
- Rebuilt of important infrastructure:
 - Helium liquefier
 - tertiary cooling loop

cooling loop below

- Challenges for the muon target at 50 kW:
 - Cooling, Deformation, Bearings suffer in the high irradiation area!
- KOYO bearing from JPARC worked very well for 2021 run period
- Slanted target type increases muon surface rate by up to 50 %
- Combined groove (for centering) and slanted target is built already
- Conceptual study HIMB for Swiss Roadmap aims for 10¹⁰ surface-μ/s in particle physics areal

