

Muon decay experiments and cLFV at high intensity muon beam facilities

Latest muon decay experiments

Measurement of decay parameters

$$\begin{aligned} \frac{d^2 \Gamma(\mu^{\pm} \to e^{\pm} \overline{\nu} \nu)}{dx \, d \cos \theta_e} &= \frac{m_\mu G_F^2}{4\pi^3} W_{e\mu}^4 \sqrt{x^2 - x_0^2} \left[F_{IS}(x) \pm P_\mu \cos \theta_e F_{AS}(x) \right] \\ F_{IS}(x) &= x(1-x) + \frac{2}{9} \rho (4x^2 - 3x - x_0^2) + \eta x_0 (1-x) , \\ F_{AS}(x) &= \frac{1}{3} \xi \sqrt{x^2 - x_0^2} \left\{ 1 - x + \frac{2}{3} \delta \left[4x - 3 + \left(\sqrt{1 - x_0^2} - 1 \right) \right] \right\} \\ x &= 2E_e / m_\mu \quad W_{e\mu} = (m_\mu^2 + m_e^2) / (2m_\mu) \quad x_0 = m_e / W_{e\mu} \end{aligned}$$

In the Standard Model

$$\rho = 3/4$$
 $\eta = 0$ $\xi = 1$ $\delta = 3/4$

 $\rho = 0.74977 \pm 0.00012 \text{ (stat)} \pm 0.00023 \text{ (syst)}$ $\delta = 0.75049 \pm 0.00021 \text{ (stat)} \pm 0.00027 \text{ (syst)}$

5000

0.5

0 ^CO_{SØ} -0.5

-1 0

10 20 30 40 50 Momentum (MeV/c)

Latest muon decay experiments $\mu^+ \rightarrow e^+ \gamma$

MEGA (LANL) - 2002 $BR(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$

MEG (PSI) - 2016 $BR(\mu \to e\gamma) < 4.2 \times 10^{-13}$

An upgrade (MEG II) is on going - 10x better sensitivity

Latest muon decay experiments

 $\mu^+ \rightarrow e^+ e^+ e^-$

Experimental techniques for muon decay studies Beam and target

- Muon decay experiments suffer of backgrounds from accidental coincidences of particles from multiple muon decays:
 - continuous or quasi-continuous beams are preferable over pulsed beams
 - very high beam intensity can be useless, if the resolutions are not sufficient to suppress the accidental background down to a negligible level

$$S \propto \Gamma_{\mu} , \ B \propto \Gamma_{\mu}^2 , \ S/\sqrt{B} = {\rm const.}$$

- Decay at rest of free muons to maximally exploit the kinematical constraints
 - positive muons are preferable over negative muons, to avoid muon capture by nuclei
 - low-energy electrons/positrons and photons, challenging the **material budget** of the experimental apparatus
 - a **well monochromatic, low momentum beam** on a **very thin target**, to get high stopping efficiency with reduced material budget

Experimental techniques for muon decay studies Charged particle tracking

- Tracking in a magnetic field provides the best performances for the reconstruction of low-momentum electrons and positrons, but a very low material budget is required
 - gaseous detectors as a standard choice over the last decades
 - very thin monolithic silicon pixels just started becoming competitive

Experimental techniques for muon decay studies Photon reconstruction

- Challenging and expensive low-energy calorimetry is required for a highly efficient photon reconstruction
- If very high muon beam intensities are available, it can become advantageous to improve the energy resolution with a photon pair conversion spectrometer, at the cost of a very small reconstruction efficiency

The quest for $\mu^+ \rightarrow e^+ \gamma$

$\mu \rightarrow e \gamma$ searches

Accidental Background

28 MeV/c muons are stopped on a thin target

Positron and photon are monochromatic (52.8 MeV), back-to-back and produced at the same time;

Radiative Muon Decay (RMD)

Ingredients for a search of μ -> e γ

Reconstruct the Photon Energy

The MEG Experiment

MEG-II

 The MEG experiment has been upgraded in all subdetectors

In 2021, first physics data collected with full readout

MEG-II status

Example of XEC multi-photon event

TC already reached the design resolution

×10³

The drift chamber could be operated stably under beam

First positron tracks observed

MEG-II status

What next?

G. Cavoto, A. Papa, FR, E. Ripiccini and C. Voena *Eur. Phys. J. C (2018) 78: 37*

Ingredients for a search of μ -> e γ

Reconstruct the Photon Energy

Ingredients for a search of μ -> e γ

Reconstruct the Photon Energy The target itself contribute significantly to the angular resolution (target as thin as possible —> *low momentum beam, as monochromatic as possible*)

Magnetic spectrometer to get the best resolutions

52.8 MeV/c —> large multiple scattering —> very low material budget (ideally a gaseous detector)

Positron Reconstruction at High Beam Rate

• MS makes useless an extreme position resolution (e.g. silicon detectors) and plays in favour of light gaseous detectors, but...

...would a gaseous detector be able to cope with the very high occupancy at > $10^9 \mu/s$?

Expected ageing (gain loss) in the MEG-II Drift Chamber

- Silicon detectors could be a practical solution
 - Competitive performances with the next generation of 25 μ m monolithics
 - Experience from Mu3e will be critical
- Solutions for a gaseous detector with high rate capabilities are also under study (new geometries, optical readout,...), in synergy with Mu2e

Ingredients for a search of $\mu \rightarrow e \gamma$

Reconstruct the Photon Energy

Calorimetry vs. Photon Conversion

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

Expected Sensitivity

A few 10⁻¹⁵ seems to be within reach for a 3-year run at ~ 10⁸ μ /s with calorimetry (*expensive*) or ~ 10⁹ μ /s with multiple conversion layers (*cheap*)

Fully exploiting 10¹⁰ µ/s and breaking the 10⁻¹⁵ wall seem to require a *novel experimental concept*

The mu3e experiment at PSI

Signal and background

2 positrons and 1 electron produced at the **same time**, in the **same place**, with **M**_{inv} = **M**_μ

Accidental Background (e.g. 2 µ decays + Bhabha)

eeevv Muon Decay (RMD + IPC)

The Mu3e concept @ PSI

- Silicon tracker in a solenoid + scintillators for timing
 - 50 µm HV-maps
 - 250 µm fibers + 1x1 mm₂ SiPM
 - 5 mm thick tiles + 3x3 mm₂ SiPM
- Phase-I:
 - New compact beam line for a quick switch between MEG & Mu3e
- Phase-II:
 - New high intensity muon beam line (HiMB) with a few $10^9\,\mu/s$ muons
- Possibility of including a single conversion layer to search for $\mu \to e \gamma$

Current status

- The magnet was installed and tested with beam in 2021
- MuPix8 chip beam tests show promising performances

Expected sensitivity

Searches for exotic particles

- Exotic particles with mass $< m_{\mu}$ can be searched for in the $\mu \rightarrow e X$ and $\mu \rightarrow e X \gamma$ channels, looking only at the positron and photon
 - either at the kinematical end point $(m_X = 0)$ or not
 - some of the best measurements date back to the 80s
 - recent update on $\mu \rightarrow e X$ from TWIST **Phys.Rev.D91(2015)052020**
- Control of systematic uncertainties and model dependence are critical

Exclusive searches

- If the exotic particles decays to standard particles, it can be searched for exclusively in given decay channel:
- MEG recently published a search for $\mu \rightarrow e X$ with $X \rightarrow \gamma \gamma$ *Eur.Phys.J.C* 80 (2020) 9, 858
- Mu3e can search for $X \rightarrow e^+e^-$ looking for invariant-mass peaks in $\mu^+ \rightarrow e^+e^+e^-$

A case study: the MEGII-fwd concept

In 2020 Calibbi et al. proposed the installation of a forward detector in MEG II to search for µ → eX in a scenario where the V-A coupling suppresses the Michel spectrum with respect to the detection of an ALP with V, A or V+A coupling

L. Calibbi et al., JHEP 09 (2021) 173

Conclusions

- A new era for cLFV searches in muon decays is just starting with MEG II and Mu3e phase I
- A new generation of muon beam facilities with 10x or 100x larger beam rate would give a great opportunity to reach the ultimate limits allowed by the current experimental approaches:
 - Mu3e phase II already designed for this
 - a MEG-like experiment would require a significative R&D effort
 - new ways for the search of light exotic particles

• From the beam perspective, not just a matter of accumulating muons:

- beam features critically affect the experimental sensitivity the possibility of designing a dedicated facility could give more optimization margin
- All these efforts would largely take advantage of a new muon campus, which also means a single community working in close synergy on different projects, exchanging information and expertise

Backup

$\mu \rightarrow e \gamma$ searches

γ Reconstruction: Limiting factors — Calorimetry

- Photon Statistics
- Scintillator time constant
- Detector segmentation

	$\mathbf{Scintillator}$	$\mathbf{Density}]$	Light Yield	Decay Time
		$[g/cm^3]$	$[\mathrm{ph/keV}]$	[ns]
t	$LaBr_3(Ce)$	5.08	63	16
	LYSO	7.1	27	41
	YAP	5.35	22	26
	LXe	2.89	40	45
	NaI(Tl)	3.67	38	250
	BGO	7.13	9	300

- LaBr₃(Ce) a.k.a. *Brillance* looks a very good candidate:
 - our simulations & tests indicate that ~ 800 keV resolution can be reached
 - extreme time resolution (~ 30 ps)
 - large acceptance
 - very expensive

γ Reconstruction: Limiting factors – Conversion

- Interactions in the converter (conversion probability, e+e- energy loss and MS)
- Large Z materials (Pb, W) give the best compromise of efficiency vs. resolution

 Can take advantage of the photon direction determination form the e+e- reconstruction

$$d_{e\gamma}^{\text{vtx}} = \sqrt{\left(\frac{X_e - X_\gamma}{\sigma_X}\right)^2 + \left(\frac{Y_e - Y_\gamma}{\sigma_Y}\right)^2}$$

Toward the next generation of μ -> e γ searches: Positron Reconstruction

- Tracking detectors in a magnetic field are the golden candidates:
 - high efficiency
 - better resolutions w.r.t. calorimetry ($\sigma(E_e)$ down to 0.2% vs. > 1%)
- Performances are limited by Multiple Scattering of 52.8 MeV positrons in target and tracker materials
 - Need a very light detector (the MEG drift chambers gave ~ 2 x 10^{-3} X₀ over the whole positron trajectory, 200 µm silicon equivalent)
 - Silicon trackers are likely to be not competitive with gaseous detectors in terms of resolutions (C-H. Cheng et al. arXiv: 1309.7679)

Positron Reconstruction at High Beam Rate

Expected aging (gain loss) in the MEG-II Drift Chamber

Would a gaseous detector be able to cope with the very high occupancy at > $10^9 \,\mu/s^2$

An active conversion layer

- Low Z active material for timing deteriorates the best efficiency/ resolution configuration
 - the active layer must be as thin as possible
- Scintillators have poor "timing to thickness" figures (~ 1 ns for 250 μm fibers)

FAST SILICON DETECTORS

 R&D on going for PET application (TT-PET)

M. Benoit et al., JINST 11 (2016) no. 03, P03011

Possible Scenarios

CALORIMETRY

Resolution									
Variable	w/o vtx detector	w/ TPC vtx detector		w/ silicon vtx detector					
		conservative	optimistic	conservative	optimistic				
$\theta_{e\gamma} / \phi_{e\gamma} \text{ [mrad]}$	7.3 / 6.2	6.1 / 4.8	3.5/3.8	8.0/7.4	6.3 / 6.9				
$T_{e\gamma}$ [ps]			30						
E_e [keV]			100						
E_{γ} [keV]			850						
Efficiency [%]			42% (70 %	% γ acceptance)					

PHOTON CONVERSION

Resolution									
Variable	w/o vtx detector	w/ TPC vtx detector		w/ silicon vtx detector					
		conservative	optimistic	conservative	optimistic				
$\theta_{e\gamma} / \phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0 / 7.4	6.3 / 6.9				
$T_{e\gamma}$ [ps]			50						
E_e [keV]			100						
E_{γ} [keV]			320						
Efficiency [%]			1.2 (1 L/	YER, 0.05 X ₀)					

MEG-II Highlights - The LXe Calorimeter

We developed large-area (12x12 mm²), UV-sensitive MPPCs to cover the inner face of the LXe calorimeter

Better Resolution, better pile-up rejection

$$\sigma_E \sim 1\%$$
, $\sigma_{\text{position}} \sim 2/5 \text{ mm} (x,y/z)$

First events/spectra from 2017 data

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Complete detector took data in 2017

Calibration with dedicated laser

MEG-II Highlights - The Timing Counters

5mm-thick Scintillator Tiles read out by 3x3 mm² SiPM

Complete detector took data in 2017

Already reached the design resolution

MEG-II Highlights - The Drift Chamber

Wiring, assembly and sealing have been completed

Had to face severe problems of wire fragility in presence of contaminants + humidity

On beam in Fall 2018

 $\sigma_E \sim 130$ keV, $\sigma_{angles} \sim 5$ mrad, 2x larger positron efficiency

MEG-II Highlights - RDC, DAQ, Trigger

50% of acc. background photons come from RMD w/ positron along the beam line

Can be vetoed by detecting the positron in coincidence with the photon

A new detector (LYSO + plastic scint.) built and tested in 2017 -> 16% better sensitivity

Trigger and DAQ will be integrated in a single, compact system (WaveDAQ)

Also provides power and amplification for SiPM/MPPC

Successfully tested in 2017 with XEC, TC and RDC

MEG-II schedule & sensitivity

Silicon detector momentum resolution

Mu3e momentum resolution (B = 1T) 4x worse than MEG-II

A. Kozlinskiy, Mu3e Collaboration, CTD/WIT 2017

DeeMee / COMET / Mu2e

Mu3e

R&D almost completed Commissioning will start soon Data taking expected > 2020

Expected BR UL ~ 10⁻¹⁶