

Upgraded Muon EDM and Negative Muon g-2 Measurements

Brendan Kiburg Muon Properties and Related Topics III 04 Feb 2022

2021 saw enhanced anomalies popping up in the flavor sector

Muon g-2

LHCB, Belle

Several other anomalies at the 2⁺ σ level Maybe NP couples differently to muons ...

https://cerncourier.com/a/new-data-strengthens-rk-flavour-anomaly/

 R_{K} probes the ratio of B-meson decays to muons vs electrons: $R_{K} = BR(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}) / BR(B^{+} \rightarrow K^{+} e^{+} e^{-})$

 $R_{\rm K}=0.846^{+0.044}_{-0.041}$, 3.1σ

Outline

Summarize FNAL Muon g-2 Status Negative Muon Running Opportunistic Muon EDM Future Efforts

Muon g-2 Experiment at Fermilab

progress

- 2021 First Result from Run-1 data
- Increases tension with theory to 4.2σ

 $\frac{\omega_a}{\omega_p} \frac{\text{muon precession frequency}}{\text{magnetic field strength}}$

• Run-5 ongoing \rightarrow expecting ~19x BNL

Analysis of Run2+3 data making good

 $a_{\mu} \propto$

BNL Measurement

- BNL collected
 - Total precision of 540 ppb, statistically limited
 - Ran μ^{-} in 2001 (~ 40% total stats)
- FNAL goals
 - 21x total BNL stats, 140 ppb goal
 - Balance 100 ppb syst + stat

FIG. 40: Results for the E821 individual measurements of a_{μ} by running year, together with the

Se Fermilab

final average.

Bennett, et al https://doi.org/10.1103/PhysRevD.73.072003

Run 6 Plan: μ⁻ configuration

- Goal
 - Measure a_{μ} to 350 ppb precision (factor two improvement on BNL μ result)
- Physics Motivation
 - World's most precise measurement of $a_{\mu\text{-}}$, which can't be done in future efforts at J-PARC or PSI that utilize μ^+
 - CPT- and Lorentz- violation at highest sensitivity in muon sector
 - Reach proposal goal of 21x BNL statistics (~140 ppb uncertainty)
- Notes
 - Requires ~2x BNL total statistics (4x BNL μ- statistics)
 - Roughly 1 accelerator season needed

CPT/Lorentz Physics Motivation

Data Tables for Lorentz and CPT Violation

V. Alan Kostelecký^a and Neil Russell^b ^aPhysics Department, Indiana University, Bloomington, IN 47405 ^bPhysics Department, Northern Michigan University, Marquette, MI 49855

January 2022 update of Reviews of Modern Physics 83, 11 (2011) [arXiv:0801.0287]

This work tabulates measured and derived values of coefficients for Lorentz and CPT violation in the Standard-Model Extension. Summary tables are extracted listing maximal attained sensitivities in the matter, photon, neutrino, and gravity sectors. Tables presenting definitions and properties are also compiled.

🗲 Fermilab

- (Minimal) Standard Model Extension (SME) Lagrangian (Kostelecky et. al.) for the muon sector $\mathcal{L}' = -a_{\kappa}\bar{\psi}\gamma^{\kappa}\psi - b_{\kappa}\bar{\psi}\gamma_{5}\gamma^{\kappa}\psi - \frac{1}{2}H_{\kappa\lambda}\bar{\psi}\sigma^{\kappa\lambda}\psi + \frac{1}{2}ic_{\kappa\lambda}\bar{\psi}\gamma^{\kappa}\stackrel{\leftrightarrow}{D^{\lambda}}\psi + \frac{1}{2}id_{\kappa\lambda}\bar{\psi}\gamma_{5}\gamma^{\kappa}\stackrel{\leftrightarrow}{D^{\lambda}}\psi$
 - All these terms violate Lorentz invariance, CPT is broken for a and b terms
 - Best limits on these coefficients in the muon sector come from the BNL experiment
- Predicts two CPT- / Lorentz violating signatures in Muon g-2
 - Sidereal (or annual) variations in precession frequency (will be done w/ μ^+ as well) \rightarrow b_T
 - Difference in muon precession frequency between $\mu^+/\mu^- \rightarrow b_Z$, H_{XY} , d_{ZO}
 - Sensitivity scales with precision of muon precession frequency

CPT / LV Tests

Measurements within one experiment

- Examine shift in precession frequency Δω_a for μ⁺,μ⁻ at colatitude
 - χ $\Delta\omega_a \equiv \langle \omega_a^{\mu^+} \rangle - \langle \omega_a^{\mu^-} \rangle = \frac{4b_Z}{\gamma} \cos \chi$
- Normalize to B-field $(\mathcal{R} = \frac{\omega_a}{\omega_p})$
- BNL Results (2008)

 $\Delta \mathcal{R} = -(3.6 \pm 3.7) \times 10^{-9}$

 $b_z = -(1.0 \pm 1.1) \times 10^{-23} \text{ GeV}$

• Improve by 2.5x with μ^- run at FNAL

Measurements across different experiments

• Perform comparison between experiments at different colatitudes χ_1 , χ_2

$$\Delta \mathcal{R} = \frac{2b_Z}{\gamma} \left(\frac{\cos \chi_1}{\omega_{p1}} + \frac{\cos \chi_2}{\omega_{p2}} \right) + 2(m_\mu d_{Z0} + H_{XY}) \left(\frac{\cos \chi_1}{\omega_{p1}} - \frac{\cos \chi_2}{\omega_{p2}} \right)$$

Combining BNL w/ CERN

 $(m_{\mu}d_{Z0} + H_{XY}) = (1.6 \pm 5.6 \times 10^{-23}) \text{ GeV}$

- Improvements only possible w/ FNAL μ^{-}
- Improve by 15x w/ future JPARC $\mu^{\scriptscriptstyle +}$ result

Fermilab

Experimental Requirements

Flip all field polarities

Beamline, Inflector, Main Magnet, Focusing Quadrupoles

Kicker

- Kicker refurbishment to allow injection pulse to flow in opposite direction
- Improve storage ring vacuum for focusing quad operation

Beamline (from muon production target)

Potential Future Running

- Current proposed timeline
 - Flip polarity during summer 22
 - Run during FY23 and complete beam operations
- Muon Campus will source Mu2e in the near future (in the positive beam polarity)
- If future μ^2 running is merited down the road and fits with the program ...
 - Production rates of μ^- are suppressed by a factor of ~2 wrt μ^+
 - Would install new inflector magnet (used to inject beam into storage ring)
 - Device is built, currently ready as a spare
 - Reduce scattering of incoming beam
 - Expect 20-40% flux gains

EDM Basics

- Motivation: Baryon Asymmetry & new CPV sources
- Permanent Electric Dipole Moments
 T- & P-Violating
 - \rightarrow CP-Violating (Assuming CPT)
 - good candidates
- Types of EDMs
 - Nucleon EDM (n,p)
 - Bare lepton (e, μ)
 - Paramagnetic Atoms/Molecules → Electron EDM, nuclear-spin independent coupling
 - Diamagnetic Atoms → Nuclear Shiff moment, nucleon EDM, or nuclear-spin-dependent electron-nucleon interaction
- ANY detection of an EDM would be very significant
 - So far, experiments have set impressive limits

References: Theory: Engel, Musolf arXiv:1303.2371. Exp: Chupp 10.1103/RevModPhys.91.015001

Theory must

🗲 Fermilab

interpret

- EDMs challenge various BSM models
- Under naïve scaling ($d_{\mu} \sim (m_{\mu}/m_e).d_e$) implies limit of ~10⁻²⁷ e cm for muon EDM

FNAL and JPARC Muon g-2 efforts will look for muon EDM

Source	d _μ Limit (e-cm)	Note
CERN III	< 1.05 x 10 ⁻¹⁸	Bailey (1978)
BNL	< 1.8 x 10 ⁻¹⁹	Bennett (2009)
FNAL	< 2 x 10 ⁻²¹	Projection Runs 1-6
JPARC	< ~10 ⁻²¹	Projection
muEDM	~ 6x10 ⁻²³	Proposal @ PSI
eEDM	< ~10 ⁻²⁷	Naïve SM scaling* from ACME-II

*However, NP models that address flavor puzzles can couple differently to the muon and electron sectors , relaxing this naïve scaling constraint. Could be as large as ~10⁻¹⁹ e cm Crivellin, Hoferichter, https://doi.org/10.1103/PhysRevD.98.113002

A Muon EDM modifies the muon g-2 precession

• Only MDM, Uniform B-Field

- An EDM tips the spin precession plane, modifies $\boldsymbol{\omega}_{tot}$
- Positrons at high energy tend to be emitted in direction of muon's spin
- Look for vertical oscillations at same frequency, but out of phase from muon g-2 signal
- Backgrounds come from anything that can generate this signal (e.g. B_r)

Trackers used to image beam and study decay properties

Muon's view of the storage region <u>Trackers</u>

Decay positron detected

and the second second

Reconstruction of muon beam distribution, decay position and angle

Measurement of beam dynamics properties

Fermilab

EDM Analysis Options

- 1. Look for an asymmetry in the phase of muon precession frequency as a function of vertical position
 - Geometric effect that couples decay positron pathlength to the average fitted phase as a function of vertical position
 - An EDM tilts the precession plane, leading to an asymmetric phase in the vertical distribution
 - Dominated by detector misalignment if an EDM is present
 - BNL-style calorimeter-based analysis, systematically limited (current best limit)
- 2. Directly measure the variation in the vertical decay angle over time with the trackers
 - Fit for an oscillation $\pi/2$ out of phase with g-2 signal
 - Sensitive to couplings with beam oscillations, vertical angle-detector acceptance couplings

 $\langle \theta_y \rangle(t) = A_{g-2} \cos(\omega_a t + \phi) + A_{\text{EDM}} \sin(\omega_a t + \phi) + c$

• Was performed at BNL, statistically limited, main path to improvements at FNAL

Uncertainties

- BNL tracking EDM result was statistically limited (~9.4M tracks)
- FNAL trackers closer to beam and have better vertical angle acceptance, project several Billion high quality tracks
- Unavoidable "background" from the Radial Field
 - Tilts precession plane, net average radial field would fake an EDM
 - Largest expected uncertainty
 - Novel systematic beam technique for scanning $< B_r >$ and tuning it close to 0
 - Developing additional instrumentation to measure $B_r(\theta)$

False EDM from radial field

S. Charity

🛠 Fermilab

Dedicated Frozen Spin EDM effort @PSI

muEDM: Towards a search for the muon electric dipole moment at PSI using the frozen-spin technique, Sakurai et al., https://arxiv.org/pdf/2201.06561.pdf

- Muon spin precession in presence of EDM
- Apply radial electric field to "freeze" muon spin to its momentum vector
- A muon EDM would result in a vertical counting asymmetry of decay positrons as a function of time
- Goal 6 x 10⁻²³ e cm in ~1 year

$$\vec{\omega} = \vec{\omega_a} + \vec{\omega_e} = -\frac{e}{m_\mu} \left[\left\{ a_\mu \vec{B} - \left(a_\mu + \frac{1}{1 - \gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right\} + \frac{\eta}{2} \left\{ \vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right\} \right],$$

$$E_{\rm f} \approx a_{\mu} B c \beta \gamma^2 \longrightarrow \vec{\omega} = \vec{\omega_e} = -\frac{e\eta}{2m_{\mu}} \left[\vec{\beta} \times \vec{B} + \frac{\vec{E_f}}{c} \right]$$

 χ^2 / ndf 133.1 / 147 SC injection Asymmetry A(t)=(N₁(t)-N₁(t))/(N₁(t)+N₁(t)) 0...0 Prob 0.7877 channe μ^+ 125 MeV/c P. = 100%. N = 5.0×10⁶ Ae 0.1666 ± 0.0010 Solenoid d. = 1.8×10⁻¹⁷ e⋅cm ω, 0.1896 ± 0.001 -0.006392 ± 0.004494 Muon tagger $A(t) = A_e \sin(\omega_e t + \phi_e)$ CMOS pixel detcto SciF Ground HV Calorimeter < 1 m10 Time [µs]

Potential Future EDM Efforts at Fermilab

- Maximize Physics Output of FNAL Muon g-2 Experiment
 - Get the most out of the existing Runs 1-6 data
 - Add additional tracker(s) to increase electron statistics,
 - Improve detector acceptance for tracks near the top/bottom of detectors by improving lower momentum track fitting
 - Minimize the net radial field and improve its knowledge
 - Improve focusing quadrupole alignment / coupling between BD and detectors
- Workshop planning for later this year to discuss the possibility of future upgrades of this equipment

Summary

- Muon g-2
 - Nearing its statistics goals
 - Planning to convert the polarity to μ^{-} this summer and produce the best measurement for μ^{-} and constrain SME CPT-violating parameters
- Muon EDM
 - Analyzing Runs 1-3 of FNAL data
 - Considering additional methods for improvements → Workshop 2022
 - Additional efforts underway and proposed at other facilities
 - JPARC EDM from g-2
 - Dedicated Frozen-spin EDM @PSI

JPARC g-2 offers novel approach, systematics

- <u>Fermilab (E989)</u>
- High-rate 3.09 GeV/c muon beam
- Highly polarized (97%)
- 1.45 Tesla, 7-meter-radius storage ring
- Run from 2018-2023
- 140 ppb goal

- <u>JPARC (E34)</u>
- Surface muon beam \rightarrow muonium \rightarrow 0.3 GeV/c muon beam
- Polarization ~ 50%
- 3 Tesla, 0.33-meter-radius storage ring
- Run mid 2020s
- 400 ppb goal

