

DIMUS:Di-Muononium Spectroscopy Collider

Patrick Fox (with Sergo Jindariani and Vladimir Shiltsev)

Muon Properties and Related Topics III, Snowmass

February 4, 2022

Bound States of QED

- Hydrogen atom (p^+e^-)
- Positronium (e^+e^-)
- Muonium $(\mu^{\pm}e^{\mp})$
- "True" Muonium/Dimuonium $(\mu^+\mu^-)$
- More exotic di-leptonic resonances $(au^{\pm}\ell^{\mp}), (au^{+} au^{-})$
- "Molecular systems" $(e^+e^-)(e^+e^-)$
- Other atoms $(\pi^{\pm}\mu^{\mp})$

Bohr atom
$$E_n = -\frac{\alpha^2 \mu}{2n^2}$$
 $r_n = \frac{n^2}{\alpha \mu}$

Higher order corrections (fine and hyper-fine) e.g. relativistic, spin-orbit, Lamb shift, spin-spin, lift degeneracy

True muonium

Rescale positronium. Mass is $2m_{\mu}-E_1$

$$E_1(H) = -13.6 \,\text{eV}$$
 $E_1(e^+e^-) = -6.8 \,\text{eV}$ $E_1(\mu^+\mu^-) = -1407 \,\text{eV}$
 $r_1(H) = a_0 = 53000 \,\text{fm}$ $r_1(e^+e^-) = 2a_0$ $r_1(\mu^+\mu^-) = 530 \,\text{fm}$

Unlike positronium there are fermionic decays (for S levels)

$$\Gamma \propto |\psi(0)|^2$$

$$n^{2s+1}l_J$$

Muonium decays

Decays/transitions short compared to muon lifetime (~2 microsec)

Muonium Production

Fool's Intersection Storage Ring

Alternative schemes included production in meson decays (eg LHCb), or radiative production (TM+gamma)

- Produces n³S₁ states with relative rate n⁻³
- For symmetric beam energies $p_z=rac{2m_\mu}{ an heta}$ and boost $\gamma=rac{1}{ an heta}$

Boost is critical for separating signal from background (Bhabha)

$$c\tau(^3S_1) \approx 0.5 \,\mathrm{mm}$$

Muonium Production

$$\sigma(e^+e^- \to \mu^+\mu^-)|_{\beta \approx 0} = \frac{2\pi\alpha^2\beta}{s} \left(1 - \frac{\beta^2}{3}\right) S(\beta)$$

$$\sigma_{b.s} = \left(\frac{\pi^2 \alpha^3}{2m_{\mu}^2}\right) \left(\frac{\alpha^2 m_{\mu}}{4\Delta E_e}\right) \sim \left(\frac{1\text{MeV}}{\Delta E_e}\right) 10^{-34} \text{cm}^2$$

$$\frac{\sigma_{b.s}}{\sigma_{Bhabha}} \sim \left(\frac{3\pi\alpha}{2}\right) \left(\frac{\alpha^2 m_{\mu}}{4\Delta E_e}\right) \sim \left(\frac{1\text{MeV}}{\Delta E_e}\right) 10^{-4}$$

Novosibirsk "Mu-Mu-Tron" Design

search and study ($\mu^+\mu^-$) bound state

A. Bogomyagkov, V. Druzhinin, E. Levichev, A. Milstein, S. Sinyatkin

We discuss a low energy e^+e^- collider for production of the not yet observed ($\mu^+\mu^-$) bound system (dimuonium). Collider with large crossing angle for e^+e^- beams intersection produces dimuonium with non-zero momentum, therefore, its decay point is shifted from the beam collision area providing effective suppression of the elastic $e^+e^$ scattering background. The experimental constraints define subsequent collider specifications. We show preliminary layout of the accelerator and obtained main parameters. High luminosity in chosen beam energy range allows to study π^{\pm} and η -mesons.

IOTA/FAST Facility for Accelerator and Beam Physics R&D

IOTA/FAST: 5 MeV e-, 50 MeV e-, 100-300 MeV e-, ring and 2.5 MeV p+

- The only dedicated facility for intensityfrontier accelerator R&D; ranked as top facility ("Tier 1") for acc. & beam physics thrust by recent GARD review (Jul 2018)
- ~30 Collaborating institutions
- Nat. Lab Partnerships: ANL, BNL, LANL, LBNL, ORNL, SLAC, TJNAF
- Many opportunities for R&D with cross-office benefit in DOE/SC

DiMuonSpectroscopy (DiMuS) at NML: Opportunities

- Excellent source of high energy electrons:
 - eg 3000 bunches x 5 Hz x 2e10 = 3e14 e-/s
 - at 1% conversion \rightarrow 3e12 e+/s
- DIMUS will probably need much less
 - eg 200 bunches x 1 Hz x 2e10 = 4e12 e-/s
 - at 1% conversion \rightarrow 4e10 e+/s
- Efficient linac now upto 300 MeV
 - DIMUS will need extra ~108 MeV → total of 408 MeV
- Infrastructure and expertise:
 - wide & (important) long tunnel, cryo, power, HCW, etc
 - knowledgeable people

To Covert NML into Collider Facility One Needs:

Collider e+e- Rings (2 x 408 MeV)

Second CM, so the final energy 408 MeV

Positrons:

- Conversion/collection system
- Acceleration
- Storage ring accumulator
- Fast injection kickers

The Second CryoModule

- will be good for 250-320 MeV
- DIMUS might need only 208 MeV

Positron Production - Several Options Exist

- Need (at least) two linacs:
 - Accelerate electrons (50... 300 MeV)
 - Convert them on tungsten target
 - Accelerate positrons which then go to a damping ring

Will require fast kickers (similar to ILC)

DiMuS at NML: Summary

- They can be created in e+e- collision with large longitudinal momentum (as they quickly decay)
 - e.g. 408 MeV/beam at 75°
- FAST/NML is perfectly suitable for DIMUS:
 - SRF accelerators, plenty of e-, wide/long tunnels
 - potential for O(1e32) luminosity and ~0.5M dimuons per year

Requires:

 second SRF CM, positron production and accumulation system, collider rings, detector(s)

After production

If muonium transits material it can be destroyed

$$\sigma_{dissoc.} \approx 13Z^2 \text{barn}$$

If muonium exposed to intense laser it can be put into P-state

If transits regions with strong B-field, level mixing can also populate other states

Spectroscopy: measure Lamb shift, hyperfine etc Decay lifetimes and branching ratios

New Physics

Ongoing anomalies in muon sector: g-2, muonic Hydrogen, R_K New physics coupled to muons?

Great probe of short distances, no nuclear effects to contend with

New forces can change size of muonium, altering production/ decay

$$(\mu^{+}\mu^{-}) \to V_{NP}^{*} \to e^{+}e^{-}$$

and provide new decay channels

$$(\mu^+\mu^-) \to \gamma X \qquad (\mu^+\mu^-) \to XX$$

$$X \to SM SM$$

or change energy levels (spectroscopy)

2S-2P transition

Strong constraints from other measurements

New Decay Modes

Spectroscopy_[Ji,Lamm; 1712.03429]

Transition	$E_{\rm theory}$ [MHz]
$1^3S_1 - 1^1S_0$	42329355(51) _{had} (700)
$2^3S_1 - 1^3S_1$	$2.550014(16) \times 10^{11}$
$2^3P_0 - 2^3S_1$	$1.002(3) \times 10^7$
$2^3P_1 - 2^3S_1$	$1.115(3) \times 10^7$
$2^3P_2 - 2^3S_1$	$1.206(3) \times 10^7$
$2^{1}P_{1}-2^{3}S_{1}$	$1.153(3) \times 10^7$

Muonic forces/contact interactions can alter energy levels: Lamb shift, hyperfine, 2P-2S, 2S-1S, etc

QED prediction known to $\mathcal{O}(m_{\mu}\alpha^5)$ BSM ~100 MHz

Detection

- ◆ Detector requirements can depend on the physics goals
- Can we observe True Muonium (TM)?
- Can we perform spectroscopy analysis of TM?
- Are there exotic decays of TM we should look for?
- Can we do other physics with this setup?

The Challenge:

- $e+e-\rightarrow TM \rightarrow e+e-$
- The primary background is Bhabha events
- For delta(E_e) ~10 keV, the signal x-section is ~5 nb
- Bhabha $\sim 22,000 \text{ nb} -> S/B \sim 1/4,000$

Tracker Considerations

- ◆ For Dimuonium: beta* gamma* ctau = 2 mm
- ◆ Interaction region spread ~300
 - Detector resolution can be small (<100 microns)
 - Total vertex resolution <400 microns
- Requiring z > 2 mm would suppress Bhabba events
 - Prompt background free after the cut
- Extract 1S/2S/3S fractions from the vertex position
- Need a vertex detector:
 - Pixelated silicon
 - ★ CMS Phase-0 had 100-150 micron pitch pixels and allowed z resolution of <100 microns in r-z and <30 microns transverse plane. Good enough!
 - Drift chamber? Straw tracker?

Calorimeter Considerations

- ◆ Electron/positron energy ~ 100 MeV
- Only few particles in the event do not need fine segmentation, but do need good resolution and good coverage/acceptance
- A decently large crystal would contain the electron/positron and the right choice of crystal would give a lot of light
 - LYSO crystal read out by SiPM
 - PbWO4 cheaper but probably not bright enough
 - Plastic is not going to work
- Precision timing desirable for further BG suppression and spectroscopy measurements?

Detector Sketch

- Vertex: Pixelated silicon vertex detector
- LYSO calorimeter with excellent timing and energy resolution
- ◆ Directionality: Additional 2-3 tracking layers between the vertex detector and the calorimeter. Gas based (GEM) or silicon strips
- No magnetic field necessary
- Can probably achieve 50+% acceptance per track, 25% total.
- ◆ 100k-0.5M signal events per year
- Integrated radiation dose small
- ◆ Devil is in the details...

X-ray Photon Detection

- ◆ Transition between the TM states happens with the emission of photons in the 100 eV – 10 KeV range.
- Can you infer this from the energy resolution of the electron/positron?
 - deltaE/E ~ 10 keV/ 100 MeV <10-4, very hard even at the higher end of the spectrum
- Direct detection of KeV photons
 - Examples DEAR, SIDDHARTA experiments at DAFNE (kaon spectroscopy, ~6 KeV x-ray photons)
 - SDD a possibility. Beam backgrounds?
- What about Laser spectroscopy?

Detect	or	Si(Li)	CCD	SDD
Area	[mm2]	200	724	100
Thickness	[mm]	5	0.03	0.30
△E (FWHM)	[eV]	410	170	185
∆t (FWHM)	[ns]	290	-	430

200 SDDs with 1cm² per SDD

Conclusions

- Dimuonium is a bound state of QED, never seen before!
- Provides a precision laboratory to test QED and muons
- Existing anomalies: g-2, proton radius, R_D, R_K
- FISR produces relativistic dimuonium in 3S1 states
- Proposal for DIMUS at NML/FAST, modest upgrades (eg 2nd cryo-module, fast kicker, positrons)
- Detection of TM in e+e- final state needs vertex detector, high resolution, good timing calorimeter
- Opportunity for detailed study of its properties production rate, decays, transitions. Constraints on new physics.

Conclusions

- Dimuonium is a bound state of QED, never seen before!
- Provides a precision laboratory to test QED and muons
- Existing anomalies: g-2, proton radius, R_D, R_K
- FISR produces relativistic dimuonium in 3S1 states
- Proposal for DIMUS at NML/FAST, modest upgrades (eg 2nd cryo-module, fast kicker, positrons)
- Detection of TM in e+e- final state needs vertex detector, high resolution, good timing calorimeter
- Opportunity for detailed study of its properties production rate, decays, transitions. Constraints on new physics.

Beam energy	408	MeV
C.m.e. \sqrt{s}	211	MeV
C.m.e. spread	0.4	MeV
Crossing angle	75	\deg .
Circumference	23	m
Beta-functions at IP (y, x)	20/0.2	cm
Bunch length	1.2	cm
Bunch spacing	1.9	ns
Beam sizes at IP (y, x)	0.7/130	$\mu\mathrm{m}$
Number of bunches	40	
Number of e^+/e^- per bunch	$4 \cdot 10^{10}$	
Beam lifetime	≥ 30	sec
$\operatorname{Max} e^+$ production rate	$4 \cdot 10^{10}$	e^+/s
Peak luminosity	$1.6 \cdot 10^{32}$	$cm^{-2}s^{-1}$

TABLE I. Main parameters of the DIMUS collider at Fermilab's NML/FAST.