Search for R-parity violating SUSY signatures with the ATLAS detector

SEARCH2012, Maryland

Shimpei Yamamoto (Univ. of Tokyo)

on behalf of the ATLAS collaboration

<u>Outline</u>

- I. Introduction
- 2. RPV-SUSY searches at ATLAS
- 3. Summary

1. Introduction

Unexpected SUSY?

- ► SUSY with R-parity ($=(-1)^{3(B-L)+2S}$) conservation (RPC) is really popular:
 - Provides elegant solutions to the dark matter and hierarchy problems.
 - Leads to natural GUT.
- ▶ But currently one can squeeze the parameter space:
 - No significant excess of events having large missing transverse momentum (Etmiss) at LHC searches.
 - Indication of m_H~ I 25GeV.
 - Flavor constraints from $b \rightarrow s \gamma$, $B \rightarrow \tau \nu$, $B_s \rightarrow \mu \mu$ etc.
 - Constraints from dark matter direct detection experiments.
- Some viable RPC models still survive, but we certainly must all possibilities.

R-parity violating SUSY

There's no reason why R-parity should be exactly conserved... R-parity violating (RPV) terms are allowed in the superpotential:

$$W = W_{\text{MSSM}} + \underbrace{\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_u}_{\text{Lepton number violating (LNV)}} + \underbrace{\lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k}_{\text{Baryon number violating (BNV)}}$$

▶ If all terms appear, proton becomes unstable...

$$au_{
m p} \propto rac{|\lambda'||\lambda''|}{M_{
m SUSY}^2} \qquad egin{array}{c} u & & \lambda' & & \lambda'' & & e^+ \ & & \lambda'' & & & \pi^0 \end{array}$$

- <u>"Part of them need not to be zero"</u> → Proton still stable & rich phenomenology
 - Resonant/associated single SUSY particle production is possible.
 - The lightest SUSY particle (LSP) is no longer stable.
 - Etmiss is diluted (or absent!)
- ▶ R-parity has played some roles.... advantages and disadvantages:
 - No dark matter candidate :-(
 - Could explain large mixing angles and hierarchical masses of neutrinos :-))

RPV signatures

So, what we're looking for is...

Signature	RPV scenario	
multileptons ($ee\mu\mu$)	$ ilde{\chi}_1^0 - \mathtt{LSP}(\pmb{\lambda})$, $ ilde{ au} - \mathtt{LSP}(\pmb{\lambda})$	
multiple $ au$ s	$ ilde{\chi}_1^0 - \mathtt{LSP}(\pmb{\lambda})$, $ ilde{ au} - \mathtt{LSP}(\pmb{\lambda'})$	
like-sign dileptons	$LL\bar{E}(\lambda), \ LQ\bar{D}(\lambda')$	
dilepton resonance (ll')	$LLar{E}\otimes LQar{D}(\lambda\lambda')$	(LNV)
late-decaying $ ilde{\chi}_1^0$	$ ilde{\chi}_1^0 - \mathtt{LSP}(\pmb{\lambda})$, $ ilde{\chi}_1^0 - \mathtt{LSP}(\pmb{\lambda'})$	

Also for bilinear RPV(κ) and BNV (λ'').

RPV signatures

So, what we're looking for is...

Signature	RPV scenario
$\boldsymbol{\xi}$ multileptons $(ee\mu\mu)$	$ ilde{\chi}_1^0 - \mathtt{LSP}(\pmb{\lambda})$, $ ilde{ au} - \mathtt{LSP}(\pmb{\lambda})$
multiple 7s	$ ilde{\chi}_1^0 - \mathtt{LSP}(\pmb{\lambda})$, $ ilde{ au} - \mathtt{LSP}(\pmb{\lambda'})$
like-sign dileptons	$LL\bar{E}(\lambda), \ LQ\bar{D}(\lambda')$
dilepton resonance (ll')	LI A handful of results today,
χ_1^0 late-decaying $\widetilde{\chi}_1^0$	but more coming soon

Also for bilinear RPV(κ) and BNV (λ'').

2. RPV-SUSY searches Multilepton final state

4-lepton search

- Very low SM background, high signal-to-background ration
 - Promising channel to find something new!
 - Interpretations using the results already reported (ATLAS-CONF-2012-001)

Selection:

- Single-lepton trigger followed by offline p_T cut
 - >25GeV for electron
 - >20GeV for muon
- 2. 4 leptons with $p_T > 10$ GeV
- 3. Etmiss > 50GeV
- 4. $|M_{SFOS(*)}-M_Z| > 10 \text{GeV } (Z\text{-veto})$ (*) Same Flavor Opposite Sign

	w/o Z-veto	W/ Z-veto
BG exp.	1.7±0.9	0.7±0.8
Observed	4	0

Limits on visible cross section of BSM: < 3.5(1.5) fb w(w/o) Z-veto

BG breakdown

- Very high S/B ratio, but hard to estimate SM BG processes with very low rates.
 - BG estimation fully based on MC.
 - Validation regions to confirm that nothing goes wrong in the BG model.

	≥4 leptons + Etmiss>50GeV	+ Z-veto
ttbar	0.17±0.14	0.13±0.11
single t	0±0.04	0±0.04
ttbar+V	0.48±0.21	0.07±0.04
ZZ	0.44±0.19	0.019±0.020
WZ	0.25±0.10	0.09±0.05
WW	0±0.015	0±0.015
Zγ	0±0.5	0±0.5
Z+LF-jets	0.33±0.67	0.33±0.67
Z+HFjets	0.024±0.035	0.024±0.035
Drell-Yan	0±0.05	0±0.05
BG Total	1.7±0.9	0.7±0.8
Data	4	0

Validation samples

ZZ: 4 leptons + low Etmiss(<50GeV) MC: 23±5

Data: 20

Top: 2 OFOS leptons + 2 fakes (reversed isolation) + 1 b-tagged jet.

 $MC: 8.4\pm0.8$

Data:8

"Z+light-flavor jets" dominates and large uncertainty due the limited MC statistics.

Signal Model

- BCI-like $an \beta$ -m_{1/2} grid with $\tilde{\tau}$ -LSP (hep-ph/0609263, arXiv:1008.1580v2)
 - $m_0 = A_0 = 0$, $\mu > 0$, $\lambda_{121} = 0.032$ (at M_{GUT})
- Production mode:
 - Strong, weak ($\tilde{\chi}^0$, $\tilde{\chi}^{\pm}$), stau-pair, slepton-pair
- Decay channel:

	Mass [GeV]	Channel	BR	Channel	BR
$ ilde{ au}_1^-$	148	$\tau^-\mu^{\pm}e^{\mp}\stackrel{\scriptscriptstyle (-)}{\scriptscriptstyle \mathcal{V}}_e$	50.1%	$ au^- e^\pm e^\mp \stackrel{\scriptscriptstyle (-)}{\scriptscriptstyle \mathcal{V}}_\mu$	49.9%
$ ilde{e}_{ m R}^-$	161	e^-v_μ	50.0%	$\mu^- \nu_e$	50.0%
$ar{ ilde{\mu}_{ m R}}$	161	$\tilde{\tau}_1^{\pm} \tau^{\mp} \mu^-$	99.9%		
$ ilde{\chi}_1^0$	162	$ ilde{ au}_1^{\pm} au^{\mp}$	99.6%		

 $m_{1/2}$ =400GeV, $tan\beta$ =13 (BCI benchmark)

- Final state:
 - 2e $^{\pm}$, 2(e or mu), 2taus + Etmiss

Production process

- ▶ Weak prod. dominates for most of parameter space.
- Stau-pair prod. dominates at high-tanβ region.

Interpretation

- Selection cuts with Z-veto.
- Limits on BCI-like grid:
 - $m_{1/2}$ < ~800GeV (corresponding gluino mass ~1770GeV) for $\tan \beta$ < 40

(Poor acceptance for $\tan\beta$ >40 due to a small 4-body decay branch and a significant lifetime of stau.)

arviv:1109.3089

2. RPV-SUSY searches " $e-\mu$ " resonance

RPV sneutrino

RPV tau sneutrino with LNV-decay:

$$\lambda'_{311} \neq 0 \&\& \lambda_{312} \neq 0$$

- Signature: e-µ resonance
 - Excess expected in $m_{e\mu}$ distribution
 - Low SM background.

in'e BGR M

Electron:

- pT > 25 GeV
- $|\eta| < 1.37$ or $1.42 < |\eta| < 2.47$
- Isolated && shower shape requirements

Muon:

- p_T > 25 GeV
- $|\eta| < 2.4$
- Reconstructed in Inner
 Detector&Muon Spectrometer.
- Isolated

Selection:

- Exactly one electron and one muon with "opposite-sign charge"
- No requirements on jets and Etmiss

BG estimate

- SM background processes:
 - **Z**/ γ *(→ττ), top, diboson
 - Estimated using MC
- Instrumental background (jet/γ faking to a lepton)
 - $W/Z+\gamma$ by MC
 - QCD/W+jets background derived using a data-driven matrix method:

$$\begin{bmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{bmatrix} = \begin{bmatrix} rr & rf & fr & ff \\ r(1-r) & r(1-f) & f(1-r) & f(1-f) \\ (1-r)r & (1-r)f & (1-f)r & (1-f)f \\ (1-r)(1-r) & (1-r)(1-f) & (1-f)(1-r) & (1-f)(1-f) \end{bmatrix} \begin{bmatrix} N_{RR} \\ N_{RF} \\ N_{FR} \\ N_{FF} \end{bmatrix}$$

The efficiency "r" is measured using $Z \rightarrow II$ events selected with one tight (tag) and one loose (probe) leptons with $80 < m_{II} < 100 GeV$.

The jet fake rate "f" is measured using QCD jet events; e.g. for electrons

- ✓ Select two same-sign electrons passing loose criteria but one fails tight (tag).
- √Veto real lepton from Z: m_{ee} <70 or >110GeV, $\Delta \phi_{ee}$ >2

- I) Define loose/tight lepton definitions apply on all events to get N_{TT},N_{TL},N_{LT} and N_{LL}.
- 2) Estimate efficiency (r) and fake rate (f) for a lepton that has passed the loose definition to also pass the tight definition.
- 3) Solve 4×4 matrix and obtain (RF,FR,FF) contributions to TT.

Results

- Primary contributions to the systematic uncertainty on the BG estimation come from the theoretical cross section uncertainties.
 - 12% for top pair production (dominant BG) and 5-10% for the others.

ttbar	1580 ± 170
Jet fake (QCD,W+jets)	1175 ± 120
$Z/\gamma^* (\to \tau \tau)$	750 ± 60
WW	380 ± 31
single t	154 ± 16
W/Z+Y	82 ± 13
WZ	22.4 ± 2.3
ZZ	2.48 ± 0.26
BG total	4145 ± 250
Data	4053

Result: no significant excess observed. (KS-test prob: 56%)

Interpretations

- Limits on $\sigma(pp \to \tilde{\nu}_{\tau}) \times \mathrm{BR}(\tilde{\nu}_{\tau} \to e\mu)$ as a function of $m_{\tilde{\nu}_{\tau}}$
 - tau-sneutrino having a mass below 1.32(1.45) TeV are excluded assuming $\lambda'_{311}=0.10(0.11)$ and $\lambda_{312}=0.05(0.07)$
- Limits on λ'_{311} coupling as a function of $m_{\tilde{
 u}_{ au}}$ for various values of λ_{312}
 - sneutrino mass > 270GeV assuming $\lambda_{312}=0.07$ (most stringent limit to date)

arviv:1109.3089

2. RPV-SUSY searches Late-decaying $\tilde{\chi}_1^0$ -LSP

Neutralino-LSP decay

• $\tilde{\chi}_1^0$ could decay via non-zero λ , λ ' couplings:

$$LL\bar{E}(\lambda): \tilde{\chi}_1^0 \to ll' + \nu$$

 $LQ\bar{D}(\lambda'): \tilde{\chi}_1^0 \to \begin{pmatrix} e, \mu, \tau \\ \nu \end{pmatrix} + 2 \text{ jets}$

- The lifetime is proportional to $(\lambda)^{-2}$, $(\lambda')^{-2}$
 - ▶ Decay prompt for λ , $\lambda' \approx 10^{-5}$.
 - If the RPV coupling is smaller than that (e.g. $\leq 10^{-7}$), <u>a decay vertex</u> with a significant distance from its production point can be seen.
- ▶ Perform a search using a displaced vertex (DV) reconstruction technique.
 - The result presented today is based on 2010 data, non-zero λ ' with muon final states.
 - More to come using 2011 full dataset covering variety of signatures:
 - Final states including e/tau

Displaced vertex

Vertexing:

- I. Select tracks with pT > IGeV and $|d_0|$ > 2mm wrt the primary vertices (PVs).
- 2. Make 2-track "seed" vertices.
- Make all possible N-track combinations, then iteratively split, merge, remove tracks etc. until there are no tracks shared between vertices.

Selection:

- I. Vertex in |z| < 300mm and r < 180mm
- 2. Vertex $\chi^2/DOF < 5$
- 3. $|r_{DV} r_{PV}| > 4$ mm
- 4. One muon with $p_T > 45 \text{GeV}$
- 5. Material veto (hadronic interactions, dominant background)

BG validation

N_{vtx}^{trk} and r_{DV} in control region (no material veto)

Data/MC reasonably agree. Materials are well described in MC.

Result & interpretation

- Signal region:
 - $m_{DV} > 10GeV$
 - # of tracks in DV ≥ 4
- SM MC background expectation
 - N_{BG} < 0.03
- No signal observed.

- Exclude $\varepsilon \times \sigma_{DV} > 0.09$ pb @95% CL
- ▶ Interpretation $(\lambda^{\iota}_{2ij} \neq 0)$:
 - m(squark) = 150GeV excluded.
 - Limits on $\tilde{\chi}_1^0$ lifetime

arviv: 1109.6606

2. RPV-SUSY searches LNV with bilinear terms

Bilinear RPV

- Bilinear RPV (bRPV) terms introduce neutrino masses and mixings.
 - Currently constrained by neutrino oscillation experiments.
- ▶ bRPV terms can be embedded in any RPC-SUSY model:
 - bRPV in mSUGRA:
 - Same cascades as in RPC scenarios
 - LSP may decay, but results in "lepton+Etmiss+jets" final states (most of LSP decays involve leptons/taus/neutrinos).
 - bRPV parameters are motivated by the neutrino oscillation parameters.
 - bRPV interpretation based on the I-lepton analysis result with Ifb-1.

SR & BG estimate

- Signal region:
 - Exactly one isolated muon with p_T>20GeV
 - (electrons are highly suppressed in the model)
 - ≥4 jets with p_T >40GeV
 - leading jet with p_T>60GeV
 - $\Delta \phi$ (jets, Etmiss) > 0.2
 - $M_T > 100 GeV$
 - Etmiss > 200GeV
 - Etmiss/ $M_{eff} > 0.15$
 - M_{eff} > 500GeV

- BG estimation:
 - W+jets, top
 - Normalize MC to data in background specific control regions (WR,TR).

WR	TR	
$\Delta \phi$ (jets, Etmiss) > 0.2		
40 < M _T < 80GeV		
30 < Etmiss < 80GeV		
M _{eff} > 300GeV		
N(b-jet)=0	N(b-jet)≥ I	

- Extrapolate to Signal Regions using MC shapes
- QCD by the matrix method.

Interpretation

- bRPV interpretations were done in "I-lepton + Etmiss" RPC-SUSY search.
 - Observed: 7
 - BG exp.: 6±2.7

Summary

- No sign of RPC SUSY yet... unexpected SUSY could be there.
- R-parity is conserved or violated?
 - Pros and cons on both.
 - ▶ RPC-SUSY parameter space is being squeezed... all possibilities should be considered.
- ▶ ATLAS is trying to cover possible RPV signatures:
 - 4 results were presented in context of LLE, LQD and bilinear RPV (LNV) SUSY.
 - Many analyses are being performed.
 - ▶ More to come in coming months (BNV, variety of signatures...)
- Also keep a close eye on 8TeV collision data to find something unexpected!!

Backup

MSFOF

- Before applying Etmiss cut, 24 events remain.

RPV stau

Branching ratio of stau 4-body decay and lifetime.

