SEARCH workshop 18 March, 2012

# Searches for New Particles in Multilepton and Diboson Final States at ATLAS

Koji Terashi (ICEPP, University of Tokyo)

on behalf of the ATLAS Collaboration

### Outline

Review and discuss ATLAS results on the search for new particles in multi-lepton and diboson (and similar) final states using  $I \sim 2 \text{ fb}^{-1}$  data

- Inclusive 3 or more leptons
- Heavy neutrino and right-handed W boson
- Leptoquark
- Diboson resonances
  - ZZ  $\rightarrow$  4-lepton, and 2-lepton + 2-jet
  - WZ  $\rightarrow$  3-lepton + E<sub>T</sub><sup>Miss</sup>

### **Multi-lepton Searches**

#### **ATLAS-CONF-2011-158** (1.0 fb<sup>-1</sup>)

Inclusive search for new physics signature with  $\geq 3$  high p<sub>T</sub> leptons Not necessarily involving Z's,  $E_T^{miss}$  or jets in the final state Veto events with OS SF lepton pair in Z mass window



Benchmark :

- Doubly charged Higgs
- Excited neutrinos

Also sensitive to

- SUSY multi-lepton
- Seesaw mechanism
- ▶ 4th gen.  $b'b' \rightarrow WtWt$ , ZbZb, etc.
- ▶ 4-tops from composite top

## **Multi-lepton : Selection**

#### **Electron** Muon

| Рт       | > 20 GeV                     | > 20 GeV |
|----------|------------------------------|----------|
| η        | < 2.47*                      | < 2.5    |
| Isolatio | on : pT <sup>Cone0.2</sup> / | p⊤ < 0.1 |
| * crack  | removed                      |          |

### **Selection Cuts**

- Single lepton triggers
- $\ge 3$  good leptons
- No OS-SF pair lepton with  $|M_{ll}-M_Z| < 10 \text{ GeV or } M_{ll} < 20 \text{ GeV}$  $\rightarrow$  Nominal signal region
- Additionally require  $p_T^{l}>30$  GeV
  - → Tight signal region

### Background

*let-faking lepton* background dominant outside the Z mass region

- (off-shell) Z + jets
- tt
- Double fakes (e.g, W+bb)

| Process                              | Nominal                        | Tight           |
|--------------------------------------|--------------------------------|-----------------|
| Z+jets                               | 7.9 ± 3.2 ± 2.4                | 1.0 ± 1.5       |
| tt + e-fake                          | 3.9 ± 1.6 ± 0.5                | I.I ± 0.5 ± 0.2 |
| tt + µ-fake                          | 4.8 ± 0.6 ± 0.2                | 0.9 ± 0.1 ± 0.1 |
| Double Fakes                         | 5.1 ± 1.1 <sup>+1.7</sup> -1.4 | 0.2 ± 0.2 ± 0.0 |
| Diboson                              | 3.6 ± 0.4                      | I.5 ± 0.2       |
| Single Top                           | 0.1 ± 0.1                      | 0.0 ± 0.0       |
| tt +W/Z                              | 0.5 ± 0.0                      | 0.3 ± 0.0       |
| Total BG                             | 25.9 ± 3.8 ± 4.3               | 4.9 ± 1.6 ± 0.9 |
| Signal<br>(M <sub>H++</sub> =200GeV) | 4.5 ± 0.2                      | 4.2 ± 0.2       |
| Data                                 | 31                             | 6               |



Use data-driven estimation (see backup for more details)



SEARCH2012

K.Terashi (U. of Tokyo)

## **Multi-lepton : Limits**



# **Heavy Neutr**

Non-zero masses for SM neutrinos

→ Evidence for new physics

Possible explanation : Seesaw mechanism

- light neutrino mass  $m_v \approx m_D^2/m_N$  given by neuvy neutrino in via m\_D
- Majorana nature for light and heavy neutrino  $\rightarrow$  same-sign leptons



7

**ATLAS Preminary** (2.1 fb<sup>-1</sup>)

### N<sub>H</sub> / W<sub>R</sub> : Selection

#### **Selection Cuts**

- ▶ 2 leptons and  $\geq$  l jets
- ▶ M<sub>*ll*</sub> > 110 GeV

|                                         | Electron | Muon     | Jet      |  |  |
|-----------------------------------------|----------|----------|----------|--|--|
| Рт                                      | > 25 GeV | > 25 GeV | > 20 GeV |  |  |
| η                                       | < 2.47*  | < 2.4    | < 2.8    |  |  |
| Isolation required for both e and $\mu$ |          |          |          |  |  |
| * crack removed                         |          |          |          |  |  |

- Scaler  $p_T$  sum of leptons and up to 2 jets :  $S_T > 400$  GeV (OS only)
- ► LRSM search : M<sub>IIj(j)</sub> > 400 GeV



# N<sub>H</sub> / W<sub>R</sub> : Background and Systematics



### **Background**

- ► SS final states
  - Misidentified leptons (W+jets, tt, QCD)
  - Electron charge misID due to hard brem
  - Diboson from MC
- OS final states
  - $Z/\gamma^*$ +jets (MC scaled to data)
  - tt, single-top, diboson from MC

#### SEARCH2012

### **Systematics**

- Misidentified leptons
- Electron charge misID
- For both signal and background:
  - Lepton efficiency, energy scale & resolution
  - JES, JER
  - PDF (signal)

SS

1.8

1.8

 $m_{III(i)}$  [TeV]

# N<sub>H</sub> / W<sub>R</sub> : Limits



Set 95% CL limits on  $\alpha^{-1/2}\Lambda$  vs M<sub>N</sub> for HNEO and excluded mass region in (M<sub>WR</sub>, M<sub>N</sub>) for LRSM

- Bayesian approach with nuisance parameters for systematics

→ M  $\leq$  1.8(2.3) TeV excluded for W<sub>R</sub> with  $\Delta$ M(W<sub>R</sub>, N) > 0.3(0.9) TeV Similar limits for Dirac neutrino (in backup)

## Leptoquarks

Quarks and leptons look similar  $\rightarrow$  New symmetry at high energy scale?

- Could be mediated by new gauge boson :"Leptoquark"
  - Baryon and lepton quantum numbers, colored and fractional electric charge
  - Predominantly produced in pairs via gg or  $q\overline{q}$
  - Usually assumed to couple within generations (FCNC)



2 leptons (Iv, II) + 2 jets in the final state

Ist generation : eeqq, eVqq

Phys. Lett. B 709, 158 (2012) (1 fb<sup>-1</sup>)

2nd generation : µµqq, µ∨qq Submitted to EPJC (I fb<sup>-1</sup>) arXiv:1203.3172

#### Analysis strategy

- Data-driven estimation for major backgrounds (W/Z+jets, tt, QCD)
- Form log-likelihood ratio from signal-sensitive variables to look for data excess
- Results combined to set limits on  $M_{LQ}$  vs  $\beta$  (= Br(LQ  $\rightarrow$  I<sup>±</sup>q))

# Leptoquarks : Analysis

|           | Electron                     | Muon                       | Jet      |                 |
|-----------|------------------------------|----------------------------|----------|-----------------|
| Рт        | > 30 GeV                     | > 30 GeV                   | > 30 GeV |                 |
| ŋ         | < 2.47*                      | < 2.4                      | < 2.8    |                 |
| Isolation | $E_{T}^{Cone0.2}/E_{T} < 0.$ | $I p_T^{Cone0.2}/p_T < 0.$ | 2        | * crack removed |

### **Selection Cuts**

- Exactly I or 2 charged leptons
- At least 2 jets
- $E_T^{Miss} > 30 \text{ GeV} (I \vee qq)$
- $M_T(I,E_T^{Miss}) > 40 \text{ GeV}(Ivqq)$
- ▶ M<sub>II</sub> > 40 GeV (llqq)

Construct likelihood for signal and background hypotheses :

$$L_B = \prod b_i(x_{ij})$$
 and  $L_S = \prod s_i(x_{ij})$  with

-  $M_{II}$ ,  $S_T$ ,  $\overline{M}_{LQ}$  for IIjj channel

-  $M_T(I,MET)$ ,  $S_T$ ,  $M_T^{LQ}(jet,MET)$ ,  $M_{LQ}$  for IVjj channel

as input variables

|             | LLR > 0   |           | No cut on LLR |             |
|-------------|-----------|-----------|---------------|-------------|
| Process     | eejj      | e∨jj      | μμϳϳ          | μvjj        |
| V+jets      | 26 ± 14   | 688 ± 210 | 8500±3400     | 74000±17000 |
| Тор         | 5.3 ± 2.2 | 173 ± 38  | 590 ± 240     | 11600±1900  |
| Diboson     | 0.7 ± 0.3 | ± 2       | 120 ± 30      | 1020 ± 180  |
| Multijet    | 2.3 ± 1.5 | 75 ± 15   | 130 ± 120     | 9690 ± 230  |
| Total BG    | 34 ± 14   | 950 ± 220 | 9300±3400     | 96000±17000 |
| LQ (600GeV) | 7.5 ± 0.5 | 4.5 ± 0.2 | 8.2 ± 0.4     | 3.9 ± 0.2   |
| Data        | 22        | 900       | 9254          | 97113       |



Use LLR =  $log(L_S/L_B)$ as a final variable

### Leptoquarks : Data





### Leptoquarks : Limits



Set 95% CL limits on LQ pair production cross section and exclusion regions in  $(M_{LQ}, \beta)$  plane

- Modified frequentist approach with LLR test statistic

Observed (expected) limits on LQ mass

| lst Gen. LQ      |                  | 2nd Gen. LQ      |                  |
|------------------|------------------|------------------|------------------|
| β = 0.5          | β = I.0          | β = 0.5          | β = 1.0          |
| <b>607</b> (587) | <b>660</b> (650) | <b>594</b> (605) | <b>685</b> (671) |

### **Diboson Searches**

Look for "narrow" resonances decaying to WW/WZ/ZZ and Wy/Zy Two benchmark models in Pythia as a baseline



Other interesting models that predict diboson final states

- ▶ RS with "SM fields in the bulk" :  $G^* \rightarrow WW$ , ZZ, KK Z'  $\rightarrow WW$
- Low-scale technicolor :  $\rho_T/a_T \rightarrow WZ$ , WW,  $W\gamma/Z\gamma$
- Minimum walking technicolor :  $R \rightarrow WZ$ , Wh, Zh

For a longer term :

VV resonances in Vector Boson Scattering : e.g, qq → qqWW

# ZZ ( $\rightarrow$ II + II / II + qq) Resonance

Sensitive to high-mass ZZ resonances over wide mass range Motivated by CDF 4I events at ~325 GeV (not confirmed by other channels)



 $ZZ \rightarrow II+II \rightarrow Clean signal; very small background; sensitive at low mass <math>ZZ \rightarrow II+qq \rightarrow Larger$  branching fraction; sensitive at high mass

RSI Graviton  $\rightarrow$  ZZ as a benchmarkSubmitted to PLB (I fb<sup>-1</sup>)Fiducial cross section limits for ZZ  $\rightarrow$  II+IIarXiv: 1203.0718

### **II + II : Selection**

### **Selection Cuts**

- ▶ 2 OS SF pairs (eeee, eeµµ, µµee, µµµµ)
- ▶ |M<sub>*l*l</sub> M<sub>Z</sub>| < 25 GeV
- ▶ M<sub>ZZ</sub> > 300 GeV

# Electron Muon $p_T$ > 15 GeV > 15 GeV $|\eta|$ < 2.47\*</td> < 2.5</td> Isolation : $p_T^{Cone0.2}/p_T < 0.15$ \* crack removed

| Process                                                               | Events                                                           |
|-----------------------------------------------------------------------|------------------------------------------------------------------|
| ZZ                                                                    | 1.9 ± 0.1 ± 0.1                                                  |
| Fake Leptons                                                          | 0.02 +1.0 -0.01 +0.8 -0.02                                       |
| Total BG                                                              | <b>1.9</b> <sup>+1.0</sup> -0.1 <sup>+0.8</sup> -0.1             |
| Signal<br>M <sub>G*</sub> = 325 GeV<br>500 GeV<br>750 GeV<br>1000 GeV | 590 ± 40 ± 30<br>71 ± 3 ± 4<br>12 ± 0.5 ± 0.6<br>1.5 ± 0.1 ± 0.1 |
| Data                                                                  | 3                                                                |



# II + II : Background and Systematics

### **Background**

- SM ZZ from MC
- Misidentified leptons from data
  - WZ+jets
  - Z+X (jets or photons)
  - tt  $\rightarrow$  bb+lvlv

### **Systematics**

- Luminosity
- $\blacktriangleright$  Lepton efficiency : 3-6% for e, 1-2% for  $\mu$
- Misidentified leptons
  - Limited WZ( $\rightarrow$ 3I)+jets sample
  - heavy vs light flavor jets

Misidentified lepton background estimated by

- selecting events with 3 real leptons + "lepton-like" jet
- ▶ applying fake factor = Prob(jet → lepton cut) / Prob.(jet → "lepton-like" jet cut) obtained from jet-dominant control sample
- correcting for real lepton contamination and double counting

#### ZZ background modeling checked at $M_{ZZ} < 300 \mbox{ GeV}$

| Process      | eeee                         | μμμμ                           | eeµµ                                                 |
|--------------|------------------------------|--------------------------------|------------------------------------------------------|
| ZZ           | 1.3 ± 0.1 ± 0.1              | 2.5 ± 0.1 ± 0.1                | 3.6 ± 0.1 ± 0.1                                      |
| Fake Leptons | 0.01 +0.02 -0.01 +0.02 -0.01 | $0.3 + 0.9_{-0.3} \pm 0.2$     | 0.0 +1.0 -0.0 +0.8 -0.0                              |
| Total BG     | I.3 ± 0.1 ± 0.1              | 2.7 <sup>+0.9</sup> -0.3 ± 0.3 | <b>3.6</b> <sup>+1.0</sup> -0.1 <sup>+0.8</sup> -0.1 |
| Data         | 2                            | 6                              |                                                      |

# ll + jj : Selection

### **Selection Cuts**

- ▶ 2 SF leptons with |M<sub>ll</sub> M<sub>Z</sub>| < 25 GeV</li>
   ▶ 65 < M<sub>ii</sub> < 115 GeV</li>
- Low-mass selection = pT<sup>ll</sup>>50 GeV + pT<sup>jj</sup>>50 GeV
- High-mass selection = pT<sup>ll</sup>>200 GeV + pT<sup>jj</sup>>200 GeV

# Electron Muon Jet pT > 20 GeV > 20 GeV > 25 GeV |η| < 2.47\*</td> < 2.4</td> < 2.8</td> Isolation : pT<sup>Cone0.2</sup>/pT < 0.1</td> \* crack removed

### $\rightarrow$ Also sensitive to WZ $\rightarrow$ jjll



SEARCH2012

# **II + jj : Background and Systematics**

### <u>Background</u>

- Z+jets from data-driven method
  - Define control regions : M<sub>jj</sub><65 GeV or M<sub>jj</sub>>115 GeV
  - Use M<sub>jj</sub> sidebands to determine MC (ALPGEN) normalization
  - Systematic uncertainty estimated from normalization difference between Mjj sidebands
  - Cross check with SHERPA and MCFM
- Top, Diboson, W+jets from MC

### **Systematics**

- Z+jets background modeling (~40%)
- ▶ Top (~25%), Diboson (7%), W+jets (40%)
- ▶ JES (~I 3%)
- Lepton efficiency, scale & resolution (1-2%)
- PDF, ISR/FSR (signal)

| Process   | Low-mass                    | High-mass                   |
|-----------|-----------------------------|-----------------------------|
| Z+jets    | 3530 ± 190                  | 60 ± 27                     |
| Тор       | 81 ± 25                     | 0.4 ± 0.3                   |
| Diboson   | 92 ± 14                     | 4 ± I                       |
| W + jets  | 9 ± 5                       | l ± l                       |
| Multijet  | 4 ±  4                      | 0.2 ± 0.2                   |
| Total BG  | 3720 ± 200                  | 66 ± 27                     |
| Signal    | 680 ± 120                   | 21 ± 4                      |
| <u> </u>  | (M <sub>G*</sub> = 350 GeV) | (M <sub>G*</sub> = 750 GeV) |
| Data 3515 |                             | 85                          |



#### SEARCH2012

# ll + ll : Fiducial Limits

Signal acceptance and selection efficiency to get limits on new theory

- Fiducial Region
  p<sub>T</sub>>15 GeV, |η|<2.5</li>
  2 OS SF pairs leptons (e, μ)
  - ▶ 66 < M<sub>*l*l</sub> < 116 GeV
  - ▶ M<sub>ZZ</sub> > 300 GeV

Cross section limits within fiducial region

$$\sigma_{ZZ}^{Fid} < \frac{N_{ZZ}}{\epsilon_{ZZ} \times Br(ZZ \rightarrow llll) \times L}$$
$$= \frac{5.7}{0.61 \times 0.01 \times 1.02} = 0.92 \text{ pb}$$

#### Reco & ID efficiency

Largely process independent

| Graviton<br>Mass<br>[GeV] | Theory<br>[pb] | Fid.<br>Acceptance | Sel.<br>Efficiency | Exp. Limit<br>[pb] | Obs. Limit<br>[pb] |
|---------------------------|----------------|--------------------|--------------------|--------------------|--------------------|
| 325                       | 950            | 23%                | 61%                | 4.0                | 4.0                |
| 350                       | 42             | 27%                | 61%                | 3.3                | 3.3                |
| 500                       | 6.5            | 28%                | 63%                | 3.2                | 3.2                |
| 750                       | 0.69           | 31%                | 66%                | 2.9                | 2.9                |
| 1000                      | 0.13           | 32%                | 66%                | 2.8                | 2.8                |
| 1250                      | 0.03           | 33%                | 67%                | 2.7                | 2.7                |
| 1500                      | 0.01           | 35%                | 66%                | 2.6                | 2.6                |

Need parton-level fiducial acceptance for new theory

# $ZZ \rightarrow II + II / II + jj$ : Limits

#### 95% CL observed limits on $\sigma_{P}$ Br



Set 95% CL limits on  $\sigma_{P}$  for the RSI G<sup>\*</sup> signal (k/ $\overline{m}_{Pl}$  = 0.1)

- Modified frequentist approach with LLR test statistic

RSI Graviton (k/ $\overline{m}_{pl}$  = 0.1) excluded within 325-845 GeV at 95% CL

# WZ ( $\rightarrow$ lv + ll) Resonance

#### **ATLAS Preliminary** (1.0 fb<sup>-1</sup>)

Resonance search in WZ  $\rightarrow$  3 lepton final state

Small branching fraction but also small background (dominated by SMWZ)



 $\rho_T$ 

LSTC  $\rho_T/a_T \rightarrow WZ$ 

W/Z polarization not accounted for in  $\rho_T$  decay in PYTHIA  $\rightarrow$  slightly lower A× $\epsilon$  than W'

Analysis strategy

- ▶ Select events with 3 leptons and E<sup>™iss</sup>
- Background modeling checked in control region data
- Look for excess events in M<sub>T</sub><sup>WZ</sup>

SEARCH2012

### $WZ \rightarrow lv + ll$ : Selection

|           | Electron               | Muon                            |
|-----------|------------------------|---------------------------------|
| Рт        | > 25 GeV               | > 25 GeV                        |
| ŋ         | < 2.47*                | < 2.4                           |
| Isolation | $E_T^{Cone0.3} < 4GeV$ | рт <sup>Cone0.2</sup> /рт < 0.1 |

#### **Selection Cuts**

- Exactly 3 leptons (veto 4th one)
- At least one pair of  $|M_{ll} M_Z| < 20 \text{ GeV}$
- ► E<sub>T</sub><sup>Miss</sup> > 25 GeV
- ▶ M<sub>T</sub><sup>W</sup> > 15 GeV

\* crack removed

#### Background modeling checked in control regions



SEARCH2012

### $WZ \rightarrow lv + ll : Data$

Statistical significance of data assessed using log-likelihood ratio built from M<sub>T</sub><sup>WZ</sup> and pseudo-experiments

Lowest p-value (=  $I - CL_b$ ) = 0.19 at  $M_T^{WZ}$  = 550 GeV

→ No significant excess found in data



 $m_T^{WZ}$  [GeV]

| Process  | eVee                          | μvee                             | evμμ                                  | μνμμ                             | Combined                       |
|----------|-------------------------------|----------------------------------|---------------------------------------|----------------------------------|--------------------------------|
| WZ       | $6.2 \pm 0.2 \pm 0.5$         | 7.6 ± 0.2 ± 0.5                  | 9.2 ± 0.2 ± 0.5                       | 11.6 ± 0.2 ± 0.6                 | 34.6 ± 0.4 ± 1.9               |
| ZZ       | $0.25 \pm 0.06^{+0.04}$ -0.09 | 0.48±0.09 <sup>+0.11</sup> -0.09 | $0.37 \pm 0.07^{+0.13}$ -0.09         | 0.63±0.10 <sup>+0.13</sup> -0.04 | 1.7 ± 0.2 <sup>+0.4</sup> -0.2 |
| Zγ       | 1.3 ± 0.6 ± 0.4               | -                                | 1.0 ± 0.4 ± 0.8                       | -                                | $2.3 \pm 0.7 + 1.1_{-0.6}$     |
| ll'+jets | 1.1 ± 0.4 ± 0.7               | 1.3 ± 0.5 <sup>+0.6</sup> -0.8   | $3.0 \pm 0.7 + 1.6$                   | $1.0 \pm 0.4 + 0.5_{-0.6}$       | $6.4 \pm 1.0^{+3.2}$ -4.0      |
| Total BG | 8.9±0.8±1.0                   | 9.3±0.5 <sup>+0.8</sup> -1.0     | <b>I 3.6±0.8</b> <sup>+2.0</sup> -2.2 | 13.2±0.5 <sup>+0.9</sup> -1.0    | 45.0±1.3 <sup>+4.2</sup> -4.7  |
| Data     | 9                             | 7                                | 16                                    | 16                               | 48                             |

### $WZ \rightarrow lv + ll : Limits$



Set 95% CL limits on  $\sigma_{P}$  for the W' and  $\rho_{T}$  signal using

- Finely binned signal templates
- Modified frequentist approach with LLR test statistic

 $\sigma_{^{\diamond}}Br < 0.5~pb$  for  $M_{W'}\text{=}800~GeV,~<0.6~pb$  for  $M_{\rho\text{T}}\text{=}700~GeV$ 

# WZ $\rightarrow$ lv + ll : Limits on (M $\rho_T$ , M $\pi_T$ )

![](_page_26_Figure_1.jpeg)

95% CL excluded mass regions in  $(M_{\rho T}, M_{aT})$  plane assuming acceptance for W' and  $\rho_T$  as implemented in PYTHIA

- with 2 mass assumptions for  $a_T$  and  $\rho_T$ 

| $M_{\rho T} = M_{\pi T} + M_{W}$ |                        |  |  |  |
|----------------------------------|------------------------|--|--|--|
| Ι.ΙΜ <sub>ρΤ</sub>               | $M_{aT} >> M_{\rho T}$ |  |  |  |

| Acceptance × Efficiency from | $M_{aT} = I.IM_{\rho T}$ | $M_{aT} >> M_{\rho T}$ |
|------------------------------|--------------------------|------------------------|
| EGM W'                       | <b>483</b> (553)         | <b>469</b> (507)       |
| LSTC ρT (PYTHIA)             | <b>467</b> (506)         | <b>456</b> (482)       |

### Summary

Reviewed ATLAS results on the search for new particles in multilepton and diboson final states with  $I \sim 2 \ fb^{-1}$  data

Haven't seen hints for new physics yet ...

### Inclusive 3 or more leptons

→ Preliminary limits on  $\sigma$ (fiducial) for ≥3 non-Z leptons, and  $\sigma$  for H<sup>±±</sup> and  $v^*$ 

### Heavy neutrino and $W_{\text{R}}$

 $\blacksquare$  Preliminary limits on effective Lagrangian and (M<sub>WR</sub>, M<sub>N</sub>) for LRSM

### Leptoquark

 $\blacksquare$  Limits on  $\sigma(LQ$ -pair) for 1 st generation LQ and mass

 $\blacksquare$  Limits on  $\sigma(LQ$ -pair) for 2nd generation LQ and mass

ZZ resonance  $\rightarrow$  4-lepton, and 2-lepton + 2-jet

 $\blacksquare$  Limits on  $\sigma(RSI \ G^* \rightarrow ZZ)$  and  $G^*$  mass

### WZ resonance $\rightarrow$ 3-lepton + $E_T^{Miss}$

→ Preliminary limits on  $\sigma(W' \rightarrow WZ)$ ,  $\sigma(\rho_T/a_T \rightarrow WZ)$  and  $(M_{\rho_T}, M_{\pi_T})$  for LSTC

### Backup

![](_page_29_Figure_0.jpeg)

Scaling to outside Z window

$$N_{Z,Est.}^{SR} = R_{iso} \cdot R_{MET} \cdot R_{m_{ll}} \cdot (N_{Obs.,Data}^{CR-Z} - N_{BG,MC}^{CR-Z})$$

$$R_{MET} = \frac{N_{Z,MC}^{SR}}{N_{Z,MC}^{SR,MET}}$$

$$R_{m_{ll}} = \frac{N_{Z,MC}^{SR}}{N_{Z,MC}^{SR,m_{ll}}}$$
EABCH2012

|                          | Z + e-fake | Z + µ-fake |
|--------------------------|------------|------------|
| Nz,mc <sup>SR</sup>      | 5.8        | 1.9        |
| N <sub>BG,MC</sub> CR-Z  | 27.7       | 32.2       |
| N <sub>Data</sub> CR-Z   | 43         | 59         |
| Nz,mc <sup>SR, MET</sup> | 5.8        | 1.9        |
| Nz,mc <sup>SR,MII</sup>  | 8.4        | 5.5        |
| R <sub>iso</sub>         | 0.53       | 0.24       |
| Nz,Est <sup>SR</sup>     | 5.6 ± 3.1  | 2.3 ± 0.8  |

#### K.Terashi (U. of Tokyo)

### **Multi-lepton : tt Background**

Estimated from  $e + \mu + 3rd$  lepton failing isolation cut Increase top purity with  $E_T^{Miss} > 20$  GeV Fake e and  $\mu$  contributions estimated separately

![](_page_30_Figure_2.jpeg)

|                    |                      | Nominal signal region |                 | Tight signal region |                 |
|--------------------|----------------------|-----------------------|-----------------|---------------------|-----------------|
|                    |                      | Electron              | Muon            | Electron            | Muon            |
| $N_{tt}^{SR}$      | MC                   | 2.3 ± 0.3             | 3.8 ± 0.3       | 0.7 ± 0.1           | 0.7 ± 0.1       |
| N <sub>tt</sub> CR | MC                   | 4.0 ± 0.5             | 54.8 ± 3.2      | 4.0 ± 0.5           | 54.8 ± 3.2      |
| N <sup>CR</sup>    | Data                 | 8                     | 76              | 8                   | 76              |
| $N_{BG}^{CR}$      | MC                   | I.2 ± 0.3             | 7.4 ± 1.3       | I.2 ± 0.3           | 7.4 ± 1.3       |
| Estimate           | d N <sub>tt</sub> SR | 3.9 ± 1.6 ± 0.5       | 4.8 ± 0.6 ± 0.2 | I.I ± 0.5 ± 0.2     | 0.9 ± 0.1 ± 0.1 |

SEARCH2012

K. Terashi (U. of Tokyo)

### Multi-lepton : Data

#### Background composition after all cuts applied

![](_page_31_Figure_2.jpeg)

# N<sub>H</sub> / W<sub>R</sub> : Limits

![](_page_32_Figure_1.jpeg)

95% CL limits on  $\alpha^{-1/2}\Lambda$  vs M<sub>N</sub> for HNEO and excluded mass region in (M<sub>WR</sub>, M<sub>N</sub>) for LRSM with Dirac-type neutrinos

→ Similar to those with Majorana-type neutrino

# ll + ll / ll + jj : Statistical Analysis

Perform counting experiments inside mass windows (M<sub>ZZ</sub>>300 GeV for II+II) Mass windows optimized using signal predictions Identical systematics taken to be correlated across channels

|                  | Obs | Expected<br>Signal              | Expected<br>Background           |      | Mass<br>Window<br>[GeV] | Res.<br>Mass<br>[GeV] |
|------------------|-----|---------------------------------|----------------------------------|------|-------------------------|-----------------------|
|                  | 109 | <b> 6 </b> <sup>+36</sup> - 4   | 116 <sup>+20</sup> -15           | eejj | 330-360                 | 350                   |
|                  | 147 | 165 <sup>+19</sup> -16          | 163 <sup>+28</sup> -23           | μµjj |                         |                       |
|                  | 8   | 27 <sup>+3</sup> -4             | <b>6</b> <sup>+4</sup> -2        | eejj | 480-530                 | 500                   |
| Look for bu      | 6   | 23 <sup>+2</sup> -3             | <b>8</b> <sup>+5</sup> -2        | μµjj |                         |                       |
| spectrum u       | 6   | 6.5 <sup>+0.6</sup> -0.9        | 4 <sup>+2</sup> -1               | eejj | 730-830                 | 750                   |
| algorithm        | 2   | <b>6.9</b> <sup>+0.6</sup> -0.7 | I.2 <sup>+0.9</sup> -0.5         | μµjj |                         |                       |
|                  | 2   | 1.2±0.2                         | <b>2. I</b> <sup>+1.3</sup> -0.9 | eejj | 900-1090                | 1000                  |
| → Most sig       | 3   | 1.2±0.1                         | I.2 <sup>+0.8</sup> -0.5         | μµjj |                         |                       |
|                  | I   | 0.18±0.01                       | 0.4 <sup>+0.4</sup> -0.3         | eejj | 50-∞                    | 1250                  |
|                  | I   | 0.21±0.01                       | 0.5 <sup>+0.5</sup> -0.4         | μµjj |                         |                       |
| ] Iljj (Low-mas  | 0   | 0.04±0.01                       | 0.1±0.1                          | eejj | 300-∞                   | 1500                  |
| │ IIjj (High-mas | I   | 0.04±0.01                       | 0.4±0.4                          | μµjj |                         |                       |

Look for bumps in full mass spectrum using BUMPHUNTER algorithm

#### → Most significant excess

|            | p-value | Significance |
|------------|---------|--------------|
| IIII       | 0.07    | Ι.5σ         |
| Low-mass)  | 0.08    | Ι.4σ         |
| High-mass) | 0.08    | Ι.4σ         |

### $WZ \rightarrow lv + ll : M_T^{WZ} = 506 \text{ GeV}$

![](_page_34_Picture_1.jpeg)