

SUSY searches in Jets + MET at CMS

Leonardo Sala (ETH Zurich) for the CMS Collaboration

Search2012 Workshop, University of Maryland, College Park (MD, US)

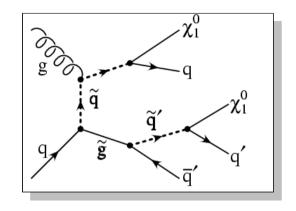
Outline

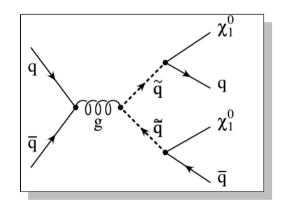
- What are we looking for?
 - → Signal topology
 - → SM Backgrounds
 - → Detector backgrounds
- Searches at CMS
 - → Variables
 - → Analyses strategies
- Interpretation of the results
- Outlook

This talk presents searches which were thought having SUSY in mind:

• High rate of gluino, squark production

This is translated into the topology:


- Final states with jets, invisible energy due to LSP (ME_{T})

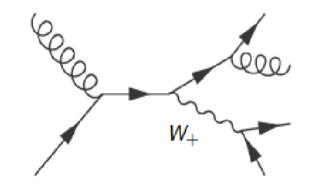

These searches are sensitive to processes which:

- Are strongly produced
- Have a massive, weakly interactive, stable colorless particle

If a model does not predict hadronically rich events, with invisible energy

• This is the wrong place to look at ;)

Standard Model processes can be divided in two broad categories:


"Reducible":

• QCD:

- × Huge cross section, potential jet fluctuations create fake ME_{τ}
- Generally, reduced to negligible amount with topological cuts
- W+Jets, Top:
 - $_{\star}$ They have genuine ME_{T}
 - But also a lepton \rightarrow lepton veto

"Irreducible":

- Z(vv)+Jets:
 - $\star\,$ Same topology, real $\rm ME_{T}$
 - Cannot be reduced (at least efficiently), must be estimated

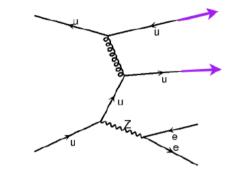
Analysis strategies (in a nutshell):

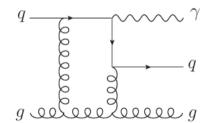
First Step: define a variable which reduces QCD multijet contribution to manageable/negligible contribution.

Second Step: define a set of cuts which reduce all the possible backgrounds

- Leptons? B-jets?
- Each cut has an acceptance and an efficiency (e.g. electron reconstruction)
 - Estimate "what remains", example: select a control sample (e.g. 1e for W+j), and correct it with acceptance, cut/reconstruction efficiencies

Third Step: define a method for estimating the irreducible background


- Example: a related physics process, well measurable and possibly with low signal contamination
- This defines again a control sample, to be corrected by theoretical ratios, etc...

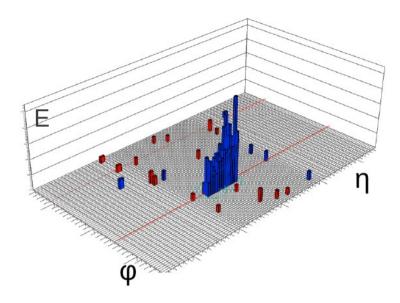

- Z(II)+jets:
 - Pro: same process (just different Br), virtually free from signal (no ME_T, mass window)
 - Con: statistics

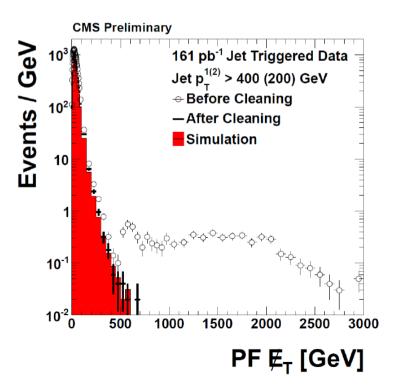
Control Sample: example

- W(Iv)+jets:
 - Pro: really similar process process, higher statistics
 - Con: contamination from signal, Top

- γ+jets:
 - **Pro:** high statistics, virtually free from signal ($ME_T \sim 0$)
 - * **Con:** massless, different couplings \rightarrow higher th. uncertainties

Detector subtleties in Jets+MET


Detectors are not perfect... and momentum imbalance is a quite sensitive quantity


Possible sources of "fake ME_{T} ":

- Electronic noise in the Hadronic Calorimeter
- Anomalous ECAL hits (particle directly hits the electronics)
- Cosmic rays (muons)
- Beam halo: muons produced by the proton beams interacting with the pipe
- Low-quality jets (clustered detector noise)
- Detector dead regions (not recorded energy)

Event-by-event quality filters developed since the beginning of data taking.

Also, multiple interactions ("Pile-Up") can create some issues

Different search variables, exploiting kinematic properties:

- **MH**_T: "Classical" approach
- α_τ: Very strong QCD rejection
- M_{τ2}: Self-protection against QCD, spectra information
- M_R, R² (*Razor*): Strong QCD rejection, approximation of masses differences

Different analysis strategies:

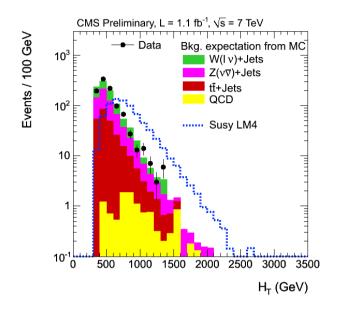
- "Simple" cut and count (M_{T2})
- "Multibinned" analysis (MH_{τ} and α_{τ})
- Shape analysis (Razor)

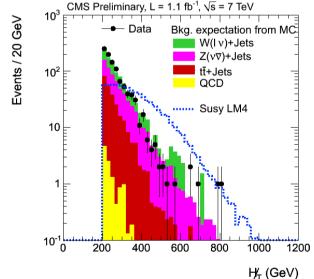
Four different analyses, different approaches:

- Complementarity
- Redundancy
- Like ATLAS and CMS

MHT (1.1/fb): definition

Multibinned analysis based on:


- H_{T} : scalar sum of jets p_{T} >50 GeV, $|\eta|$ <2.5
- MH_{T} : vector sum of jets p_{T} >30 GeV, $|\eta|$ <5


Event Selection:

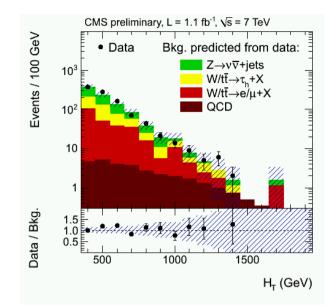
- $N^{\text{jets}}(\text{pT}>50 \text{ GeV}, |\eta|<2.5)>=3$
- + H_T>350 GeV, MH_T>200 GeV \rightarrow reduces QCD
- $\Delta \phi(\text{jet}_N, \text{MH}_T) > 0.5 \text{ (n=1,2) } \& \Delta \phi(\text{jet}_3, \text{MH}_T) > 0.3$ \rightarrow protects against MH_T due to jet mismeasurement
- Veto on isolated electrons/muons (loose cuts), pT>10 GeV, |η|<2.5 (2.4) for electrons (muons) → reduces W+jets, Top

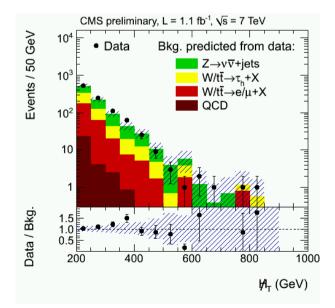
Search Regions:

- Medium H_T/MH_T : $H_T > 500 \text{ GeV}$, $MH_T > 350 \text{ GeV}$
- High H_{τ} : $H_{\tau} > 800 \text{ GeV}$, $MH_{\tau} > 200 \text{ GeV}$
- *High MH*_{τ}: H_{τ}>800 GeV, MH_{τ} > 500 GeV

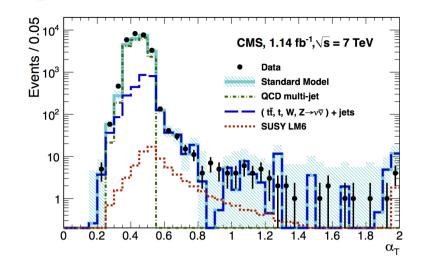
MHT (1.1/fb): backgrounds

QCD Multijets: Rebalance and Smearing method


- Rebalance: get momentum imbalance reweighting jets in data
- Smear: apply jet response function to jets (tail included)


Z(vv)+jets:

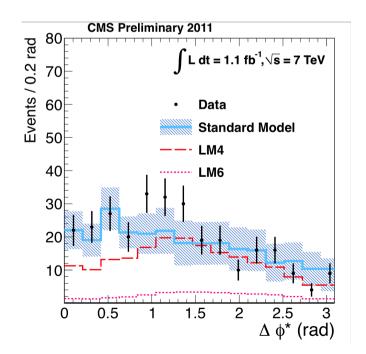
- Using γ +jets events as control sample
- Z(*II*)+jets used as cross check


W+jets, Top:

- Lost Lepton technique: $1(e/\mu)$ control sample with $m_{\tau} < 100$ GeV, corrected by acceptance, reco/ID/iso efficiencies.
- *Tau template*: $1(\mu)$ control sample, where the μ is substituted with a response function for τ^{had}

$\alpha_{\rm T}$ (1.1/fb): definition

 a_{T} variable is designed to separate events with low MET or mismeasurement from genuine events.


If N^{jets} >2, jets are merged into 2 *pseudojets* (minimizing the ΔE_{T} between them)

$$\alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{\sqrt{H_T^2 - (MHT)^2}}, \qquad \qquad H_T = \sum_{j \in ts \ j} p_{Tj}$$
$$\Delta H_T = p_{Tpseudojet \ 1} - p_{Tpseudojet \ 2}$$

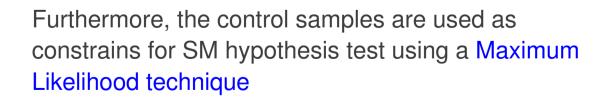
Multibin approach in H_{T} , with 8 bins: 275-325, 325-375, then in 100 GeV steps till 875- ∞

Event Selection:

- $H_T > 275 \text{ GeV}$ (with H_T / MH_T cross trigger)
- p_T^{j1,j2}>100 GeV, |η|<2.5
- $MH_T/ME_T < 1.25$ (soft jets protection)
- $\Delta \phi^*$: angular separation between the jet nearest to MH_{τ} and MH_{τ} recomputed removing that jet. Veto if $\Delta \phi^* < 0.5$ and the jet is near a problematic ECAL channel
- $a_T > 0.55$ (QCD rejection)
- Veto on isolated $e/\mu p_T > 10 \text{ GeV}$

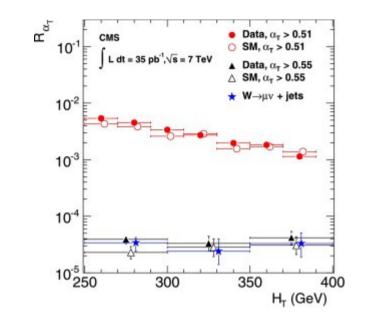
$\alpha_{T}(1.1/\text{fb})$: backgrounds

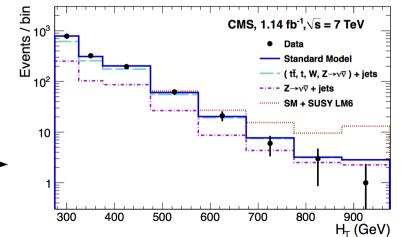
QCD multijet:

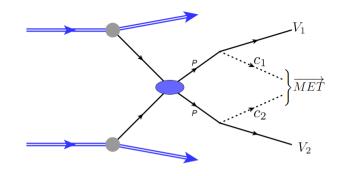

• Checked if any significant contribution with: $R_{\alpha_T} = \frac{\alpha_T > 0.55}{\alpha_T < 0.55}$

Z(vv)+jets:

- Using γ +jets events as control sample
- Cross check predicting events in 1µ sample


W+jets, Top in e/µ channels

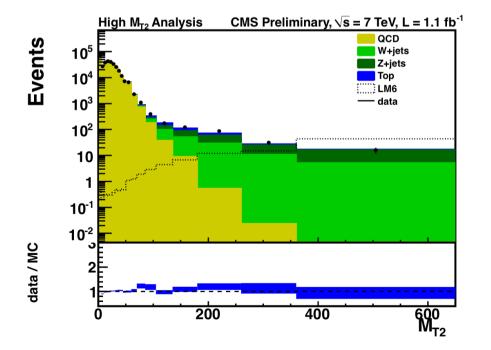

- Lost Lepton technique: 1(µ) control sample, scaled by MC^{HAD}/MC^{μ}



M_{T2} (1.1/fb): definition

 M_{T_2} (or *stransverse mass*) is an extension of M_T in case of 2 decay chain with "missing particles":

 $M_{T2}(m_c) = \min_{p_T^{c(1)} + p_T^{c(2)} = p_T^{miss}} \left[\max\left(m_T^{(1)}, m_T^{(2)} \right) \right]$


If m_c is known, the endpoint corresponds to m_p

Multijet events are divided into 2 pseudojets with hemisphere algorithm

Simplified formula in case of no ISR, zero masses: $M_{T2}^2 = 2p_T^{(1)}p_T^{(2)}(1 + \cos \phi_{1,2})$

- M_{T2}~ 0 for back-to-back systems (even with mismeasurement)
- M_{T2} < ME_T for asymmetric, nearly back-to-back mismeasured pseudojets
- $M_{T2} \sim ME_T$ for symmetric systems
- QCD is pushed to low M_{T2} values

$M_{T_2}(1.1/fb)$: definition

Analysis strategy: simple cut&count, M_{T2} spectrum divided in 3 regions:

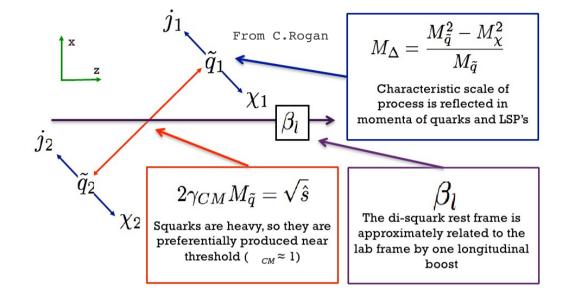
- QCD dominated: M_{T2}< 80 GeV
- SM dominated: $200 < M_{T2} < 400 \text{ GeV}$
- Signal: M_{T2}> 400 GeV

Event selection:

- N^{jets}>2, H_T>600 GeV, ME_T> 30
- $P_T^{jet1,2}$ > 100 GeV, $|\eta|$ <2.4
- |MH_T ME_T| < 70 GeV (cut on upstream transverse momentum)
- minΔφ(jet, ME_T) > 0.3 (protection against mismeasured jets)
- Veto on $e/\mu p_T > 10 \text{ GeV}$

Backgrounds:

QCD multijets: factorization method based on functional form, fitted in QCD dominated region (contribution negligible)


SM Backgrounds: estimated in SM region, extrapolated to Signal region:

- Z(vv)+j: from $W(\mu v)$ sample, with b-tag veto
- W+j, Top in e/ μ channels: Lost Lepton on e/ μ control samples
- W+j, Top in τ^{had} channel: MC based

Razor (4.4/fb): definition

Razor variables approximate boosted frames with a razor frame, where visible energies are written as a scale invariant under longitudinal boosts.

Razor boost:
$$\beta_L^R \equiv \frac{p_z^{j_1} + p_z^{j_2}}{E_{j_1} + E_{j_2}}$$

Scale: $M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$

A transverse observable M_{T}^{R} is also defined, whose maximum value peaks at M_{Δ} :

$$M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$

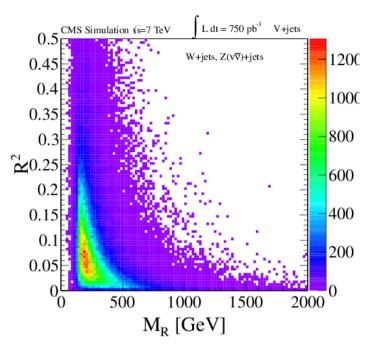
The ratio of these two quantities gives a dimensionless discriminant, the Razor R:

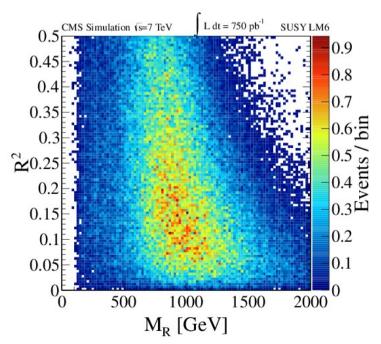
$$R \equiv \frac{M_T^R}{M_R}$$

Objects are merged in 2 pseudojets, with hemisphere algorithm

Razor (4.4/fb): Phenomenology

Signal is expected to have heavy scale M_{Δ} , SM not

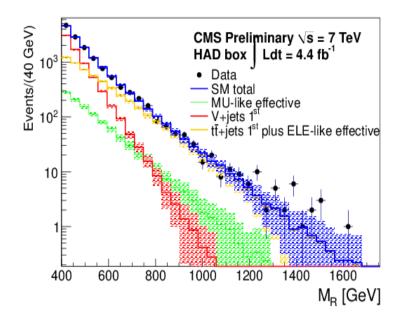

Peak over steeply falling spectrum

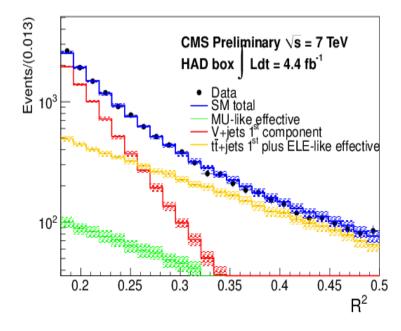

For signal *R* has a maximum value of 1, and $\langle R \rangle \sim 0.5$

QCD peaks ~0

Analysis strategy:

- On most of the R²-M_R plane, these variables have simple exponential behavior
- 2D functional forms are extracted in a set of hierarchical data samples (boxes): ELE-MU, MU-MU, ELE-ELE, MU, ELE, HAD
- R²-M_R shape parameters are extracted in SM dominated fit regions


Razor (4.4/fb): Backgrounds


Functional form for $M_{\rm B}$ for SM is a double exponential:

• Second component dominates high M_R , independent on the box \rightarrow associated with large ISR

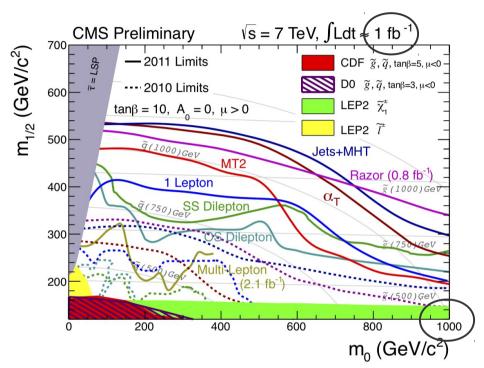
Event selections:

- Triggers:
 - → Hadronic: >1 jet p_T>56 GeV, moderate/tight cuts on R/M_R
 - → Muon: >0 muon p_T >10 GeV, $|\eta|$ <2.5, loose cuts on R/M_B
 - → Electron: >0 electron p_T>10 GeV, |η|<2.1, loose cuts on R/M_R
- Razor cuts:
 - → Leptonic boxes: M_R>300 GeV, 0.11< R² < 0.5</p>
 - → Hadronic boxes: $M_{\rm R}$ >400 GeV, 0.18< R² < 0.5

Exclusion Limits

Commonalities:

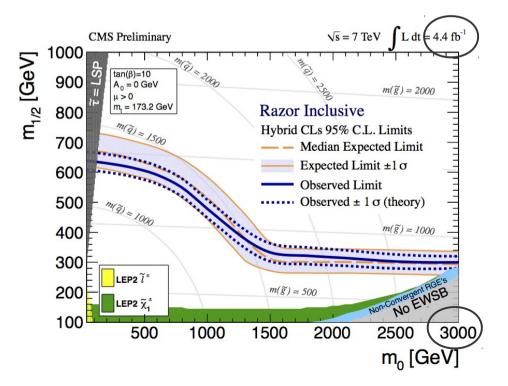
- Use of hybrid frequentist CL_s estimator
- Common tools developed in the CMS community
- Signal contamination taken into account


Technicalities for mSugra scans:

- For "Summer11" analyses:
 - → NLO Prospino cross-sections
 - → CTEQ6 pdf/scale uncertainties
- For "Winter 2012" analyses:
 - → NLO+NLLO cross sections
 - CTEQ6+MSTW pdf / scale uncertainties

Technologies:

- \mathbf{M}_{T2} : single bin
- \mathbf{MH}_{T} : each bin is a statistical channel, best limit taken
- **α**_T: Maximum Likelihood SM background+Signal
- **Razor**: all the boxes considered through Maximum Likelihood


Exclusion Limits

Caveat: M_{T2} limit is a combination of " M_{T2} " (low m_0) and " M_{T2} b" (high m_0)

Msugra/CMSSM:

- tanβ=10
- A₀=0
- µ>0

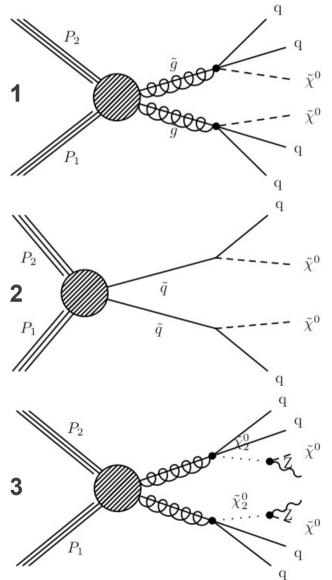
Topology based limits

Interpretation in given also in the language of Simplified Models Three topologies considered (only MH_{τ} and α_{τ}):

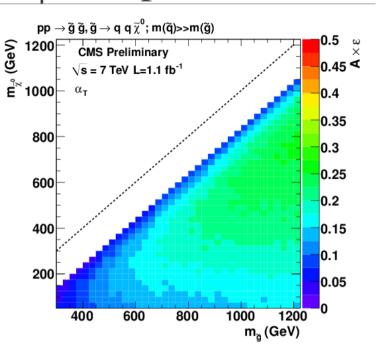
1) \widetilde{gg} production, with $\widetilde{g} \rightarrow qq\chi_0$

2) \overrightarrow{qq} production, with $\overrightarrow{q} \rightarrow q \chi_0$

3) $\widetilde{\mathbf{g}}\widetilde{\mathbf{g}}$ production, with $\widetilde{\mathbf{g}} \rightarrow \mathbf{q}\mathbf{q}\mathbf{Z}\mathbf{\chi}_{0}$


Cross sections have been computed with PROSPINO in decoupling regime, and branching ratios = 1

Different mass splittings explored

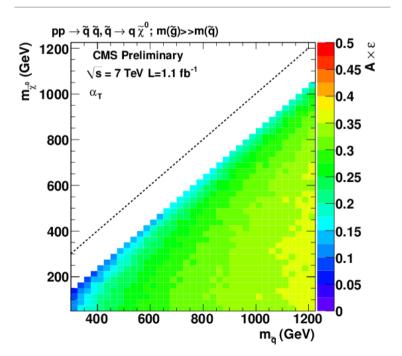

Language is SUSY, but not constrained to it

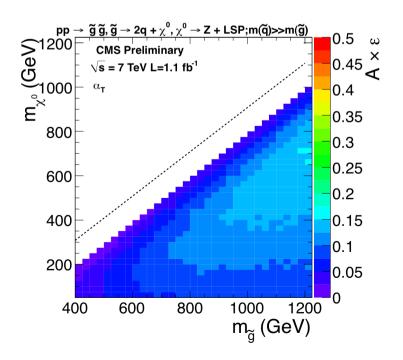
Three exclusion lines reported:

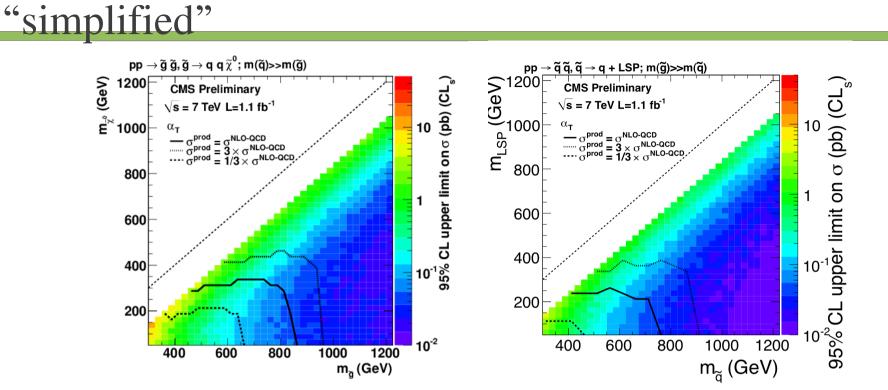
- Nominal
- With 1/3 3 times the cross section

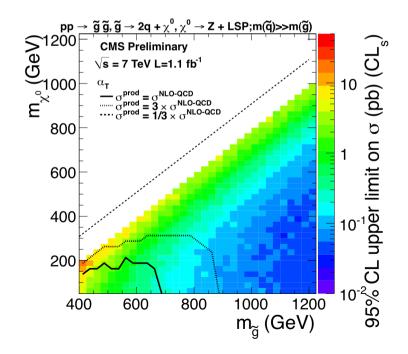
α_{τ} "simplified"

Higher efficiency for higher $\widetilde{q}, \widetilde{g}$ mass

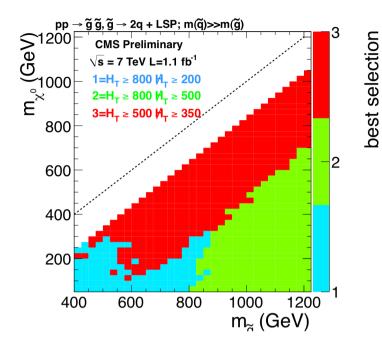

• Higher jet p_{T}

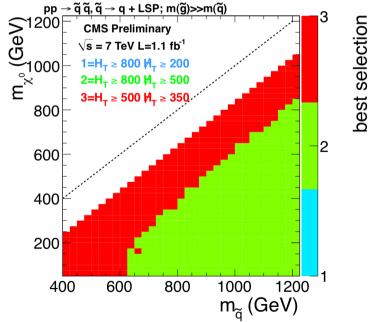

Lower efficiency for higher jet multiplicity

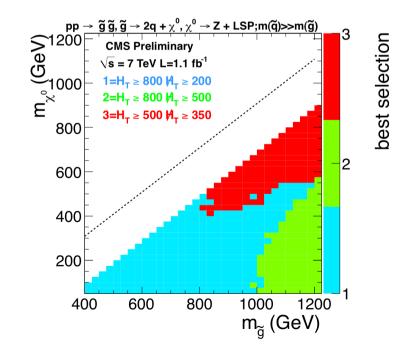

- a_{τ} was initially designed for 2-jets systems


 $\alpha_{_{T}}$ less efficient when the visible energy increases

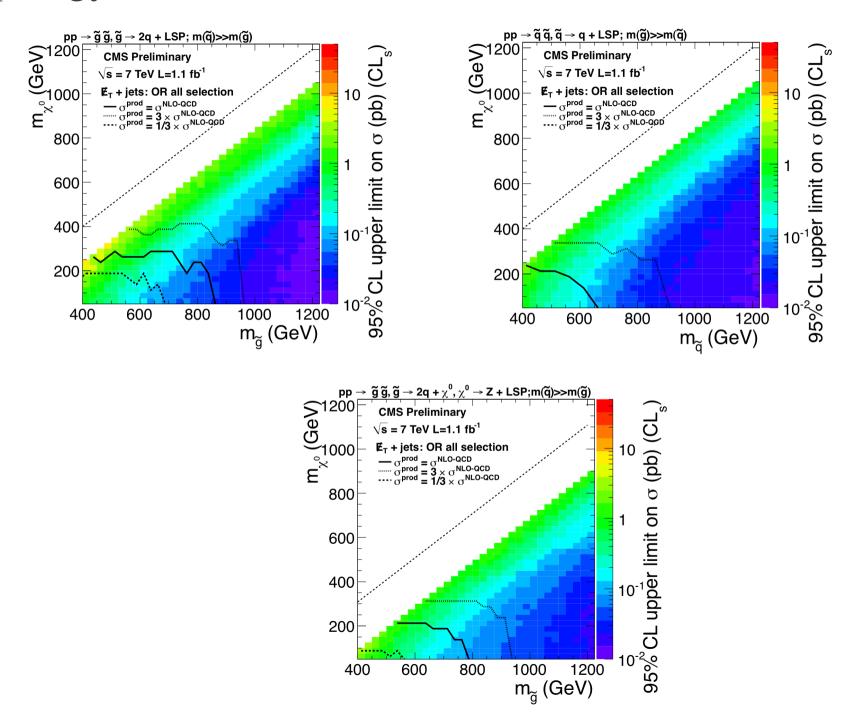
• It better explores regions where $MH_{T} \sim H_{T}$







Medium selection (3) better performs in small mass splitting scenario


High MH_T selection (2) dominates for large mass splittings

High H_T selection (1) is preferred in case of longer cascades (and lot of visible energy)

Topology based limits

Outlook

Updates to full 2011 dataset are ongoing for MH_T , α_T , M_{T_2} , with improvements wrt 1.1/fb analyses

Sensitivity to large region of the phase space, compatible results with 4 different methodologies

• No excess seen...

Challenges ahead:

- Very high jet multiplicity region (e.g. high m_{1/2})
- Low ME_τ regions (compressed spectra)
- Always improving background prediction
 - At some point, SM rare processes will kick in
 - Reduce possible signal kick-in in control regions

References

Detector noise: CERN-CMS-DP-2010-025 (HCAL), CERN-CMS-DP-2011-010 and arXiv:1106.5048v1 (ME_{τ})

γ+jets for Z(vv)+ jets: Bern et al. arXiv:1106.1423v2

MH_T: CMS PAS SUS-11-004

Alpha_τ: 10.1016/j.physletb.2011.03.021, CMS PAS SUS-11-003, Phys. Rev. Lett. 101, 221803 (original th. paper)

M_{τ2}: CMS PAS SUS-11-005, Phys. Rev. D 80, 074007 (MT2 as discovery variable)

Razor: CMS PAS SUS-12-005, arXiv:1006.272 (original th. Paper), "Razor for Searches at the LHC" C.Rogan talk at LPC Topic of the Week

Simplified Models: arXiv:1105.2838v1

CMS public SUSY results: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

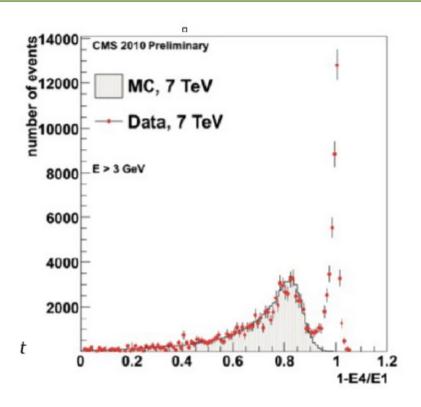
NLO QCD SUSY corrections: Beenakker, H"opker, Spira, Zerwas arXiv:hep-ph/9610490v1

Compressed Spectra: LeCompte, Martin et Al. arXiv:1111.6897

Backup

Event cleaning:

- Beam scraping removal (fraction of high-quality tracks in the event was required to be greater than 25%, for events with at least ten charged-particle tracks)
- $Sum(p_T^{tracks})/H_T > 0.1$
- \geq 1 primary vertex
- Beam halo events removal using CSC detector information [1]
- HBHE noise removal using pulse shape and topological information
- Event charge fraction (Track sum pT / HT > 0.1)

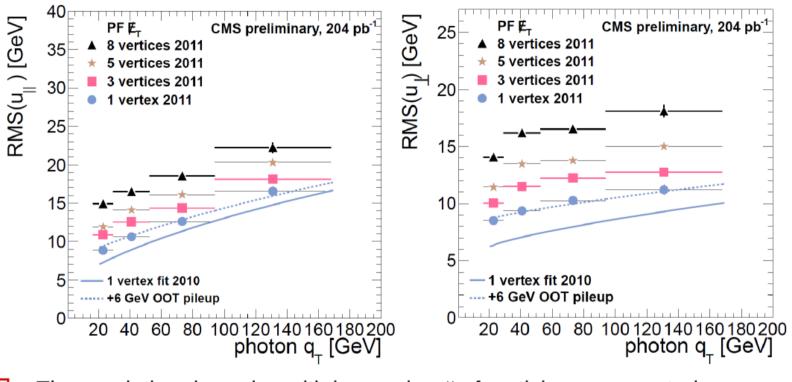

Jet cleaning (99-99.9% efficient):

- PF Jets: NHF<0.99, NEM<0.99, NConstituents>1
 - For eta >2.4: CHF>0, Charged Multiplicity>1, CEF<0.99
- Calo Jets: Number hits 90% Energy>1, HBHE>0.01, fHPD<0.98

ECAL noise

In a small fraction of events, anomalous energy deposits in ECAL with:

- Distinct pulse shape
- Different timing
- Single crystal
- Only in the barrel

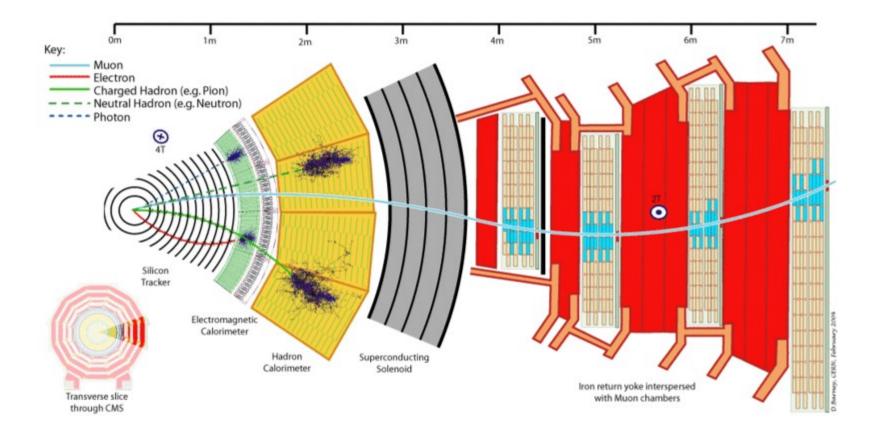

EB crystal	

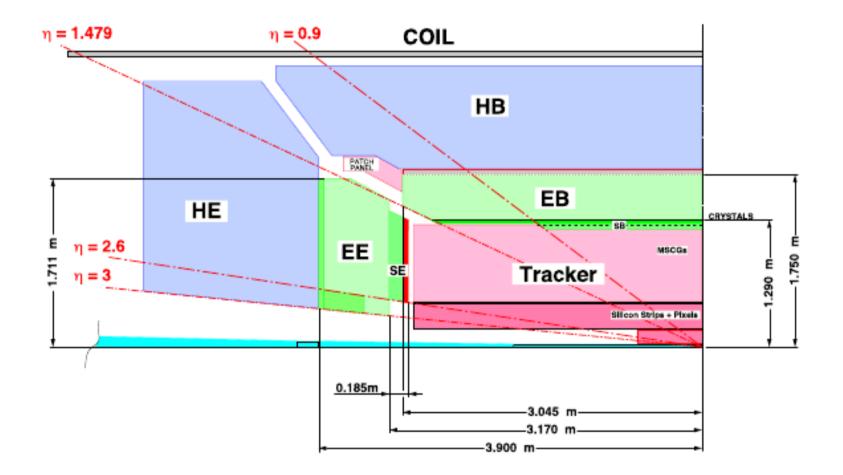
Identified as highly ionizing particles hitting the APD (in the endcap different electronics) Identified by:

- Ratio between energy in single crystal and 4 neighbours crystals (E4/E1)
- Pulse shapes

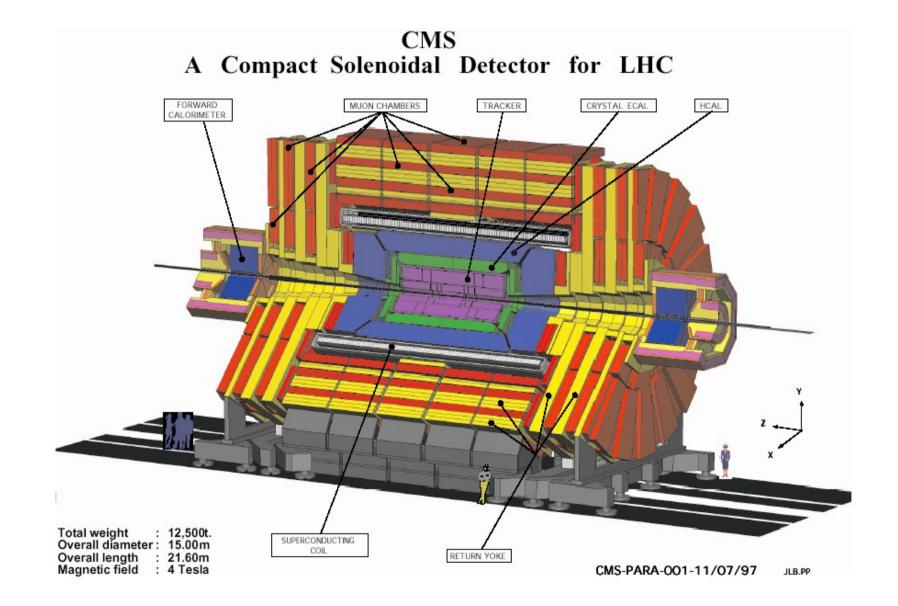
Details on Pile-Up

MET in Photon+Jet Events

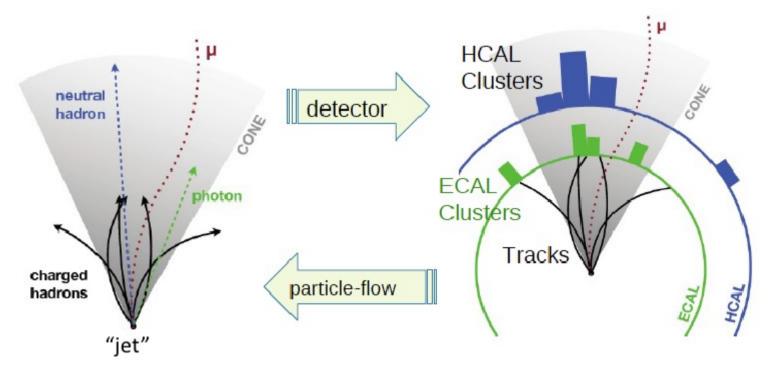



- The resolution degrades with increasing # of verticies as expected
- Even at 1 vertex, the resolution is degraded in 2011 by ~6 GeV in quadrature compared to the 2010 due to out-of-time pileup
- Work in progress to mitigate the pileup effects in MET reconstruction and to understand the slight worsening of MET resolution in 2011

July, 2011


7

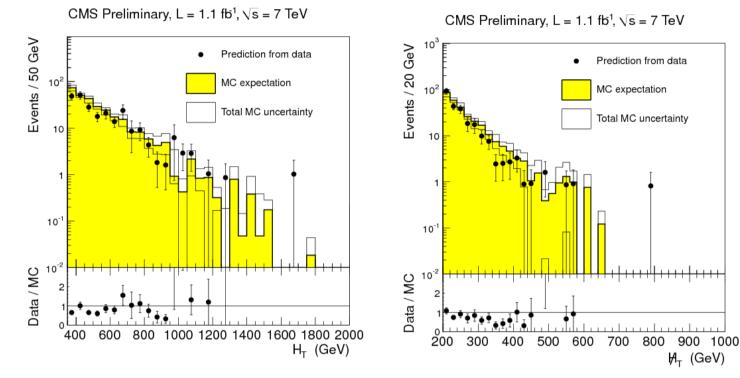
CMS – Slice


CMS – Overall

Particle Flow

A different approach in reconstruction:

- Information from different subdetectors is used to identify candidates
- Higher level objects (jets, electrons...) are built up from these candidates
- Corrections are *candidate based*

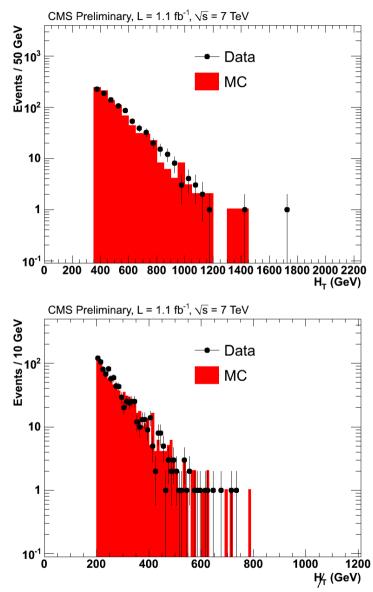

Hemispheres

Same idea, slightly different measures for grouping jets:

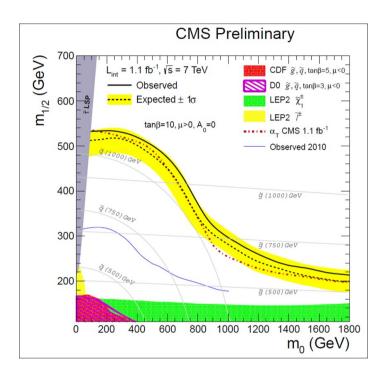
- *Razor:* minimal squared masses of both hemispheres $m_{ik}^2 + m_j^2 \le m_i^2 + m_{jk}^2 \longrightarrow (E_i - p_i \cos \theta_{ik}) \le (E_j - p_j \cos \theta_{jk})$
- M_{T2} : minimal Lund distance: $(E_i p_i cos \theta_{ik}) \frac{E_i}{(E_i + E_k)^2}$
- a_{τ} : ΔH_{τ} balance (minimal ΔE_{τ} between the two jets)

MH_T material

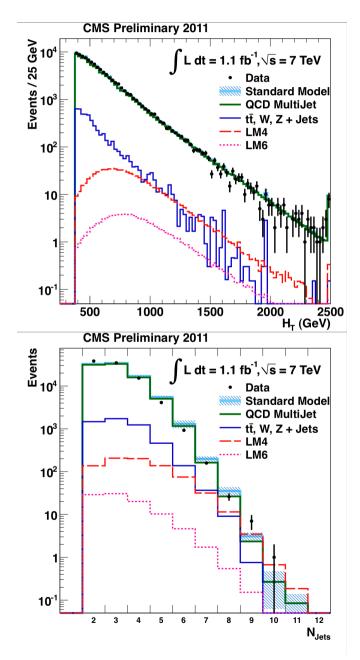
Lost Lepton Prediction



Baseline Medium High H_T High ∦_T $(H_{\rm T} > 350 \text{ GeV})$ $(H_{\rm T} > 500 \text{ GeV})$ $(H_{\rm T} > 800 \text{ GeV})$ $(H_{\rm T} > 800 \text{ GeV})$ $(H_{\rm T} > 200 \text{ GeV})$ (H_T >500 GeV) (H_T >350 GeV) (∦_T >200 GeV) $Z \rightarrow \nu \bar{\nu}$ from $\gamma + jets$ $376 \pm 12 \pm 79$ $42.6 \pm 4.4 \pm 8.9$ $24.9 \pm 3.5 \pm 5.2$ $2.4 \pm 1.1 \pm 0.5$ $22.5\pm\!6.7^{+3.0}_{-3.1}$ $t\bar{t}/W \rightarrow e, \mu + X$ $244\pm\!20^{+30}_{-31}$ $12.7 \pm 3.3 \pm 1.5$ $0.8 \pm 0.8 \pm 0.1$ $t\bar{t}/W \rightarrow \tau_h + X$ $17 \pm 2 \pm 0.7$ $263\pm8\pm7$ $18 \pm 2 \pm 0.5$ $0.73 \pm 0.73 \pm 0.04$ $1.3 \pm 1.3 \substack{+0.6 \\ -0.4}$ $0.09 \pm 0.31 ^{+0.05}_{-0.04}$ $31 \pm 35^{+17}_{-6}$ $13.5 \pm 4.1^{+7.3}_{-4.3}$ OCD Total background 73.9 ± 11.9 928 ± 103 79.4 ± 12.2 4.6 ± 1.5 Observed in data 986 78 70 3

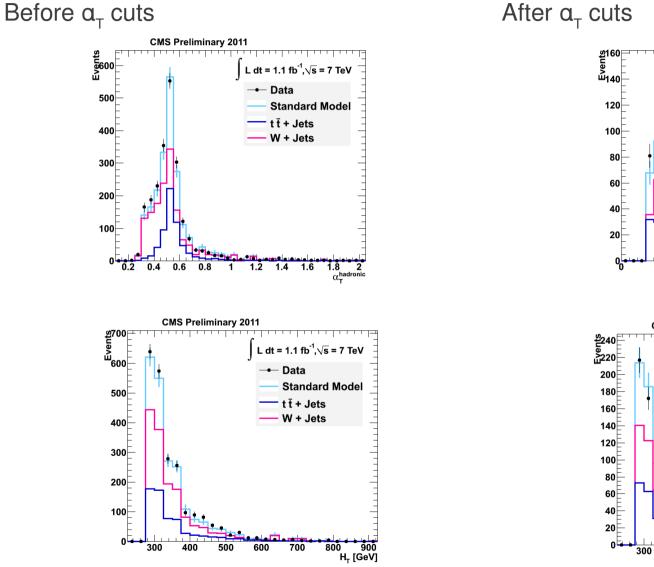

Leonardo Sala (ETHZ)

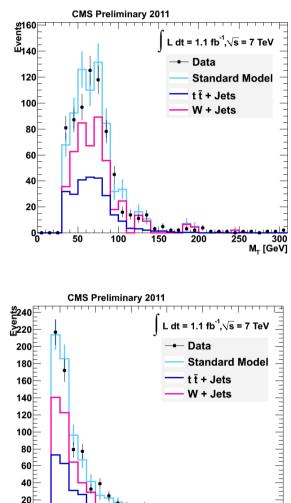
MH_T material


Photon control sample

mSugra exclusion

Control plots for $H_{T} \ge 375$ GeV and $MH_{T} > 100$ GeV, before α_{T} cuts




Leonardo Sala (ETHZ)

 $\alpha_{\rm T}$ material

 α_{T} material

Muon control plots for $H_{T} \ge 375 \text{ GeV}$ and $MH_{T} > 100 \text{ GeV}$

400

500

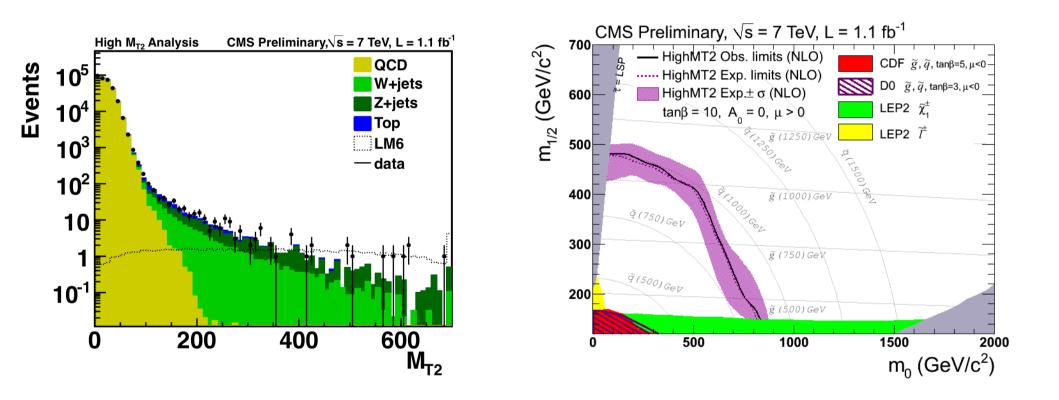
600

700

900

H_T [GeV]

800


Leonardo Sala (ETHZ)

			-	
$H_{\rm T}$ Bin (GeV)	275–325	325–375	375–475	475–575
W + tī background	363.7	152.2	88.9	28.8
$Z ightarrow u ar{ u}$ background	251.4	103.1	86.4	26.6
QCD background	172.4	55.1	26.9	5.0
Total Background	787.4	310.4	202.1	60.4
Data	782	321	196	62
H _T Bin (GeV)	575-675	675–775	775–875	875–∞
W + tī background	10.6	3.1	0.6	0.6
$Z ightarrow u ar{ u}$ background	8.7	4.3	2.5	2.2
QCD background	1.0	0.2	0.1	0.0
Total Background	20.3	7.7	3.2	2.9
Data	21	6	3	1

 $\alpha_{\rm T}$ material

MT2 material (?)

 $Bkgd(M_{T2} \ge 400 \text{GeV}) = 12.6 \pm 1.3 \pm 3.5 \text{ events}$

Boxes definition

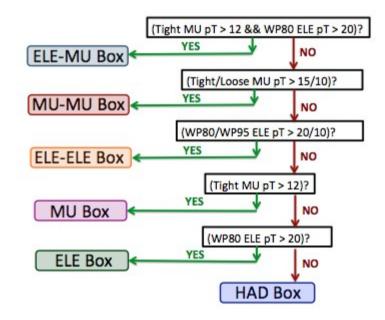


Figure 1: Flow diagram of box classification logic. The box selection proceeds according to a box hierarchy in order to ensure complete orthogonality of box selections and to resolve ambiguities when an event satisfies more than one box's selection criteria.

QCD control box

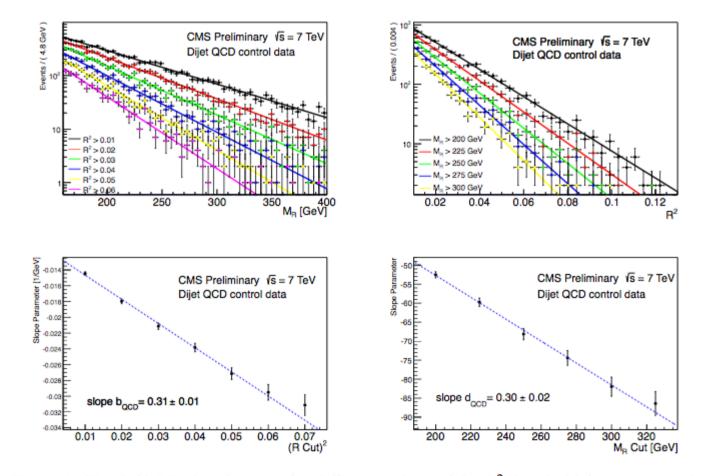


Figure 3: (Top left) M_R distributions for different values of the R^2 threshold for events in data selected in the QCD control box. (Top right) R^2 distributions for different values of the M_R threshold for events in data selected in the QCD control box. (Bottom left) The exponential slope *S* from fits to the M_R distribution, as a function of the square of the R^2 threshold for data events in the QCD control box. (Bottom right) The coefficient in the exponent *S* from fits to the R^2 distribution, as a function of the square of the R^2 threshold for data events in the QCD control box.

Mu control box

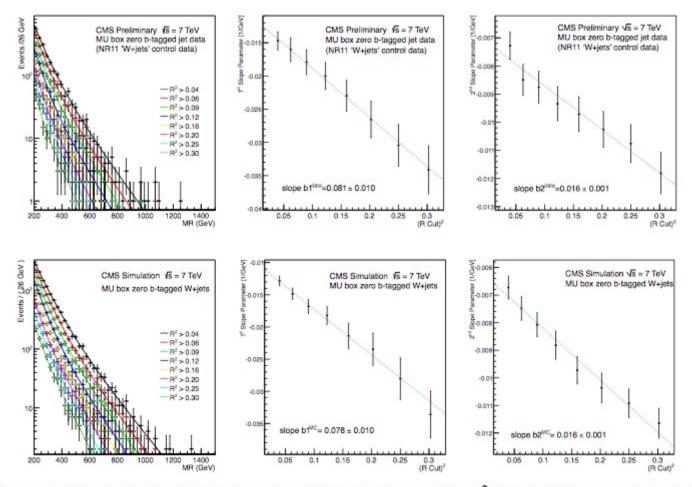
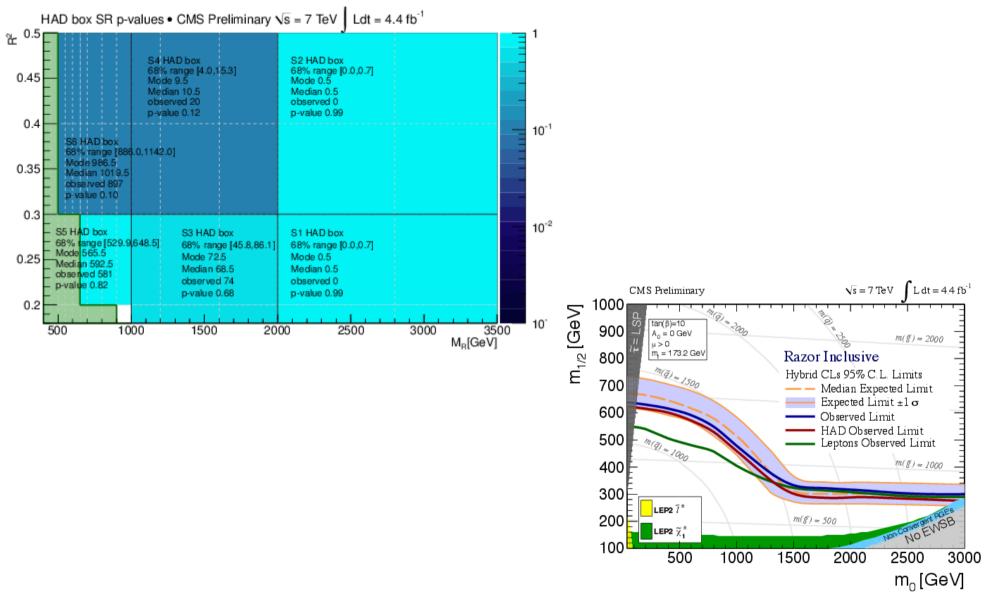
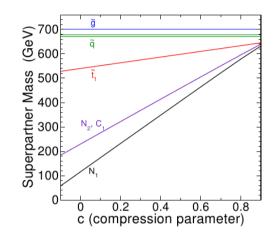
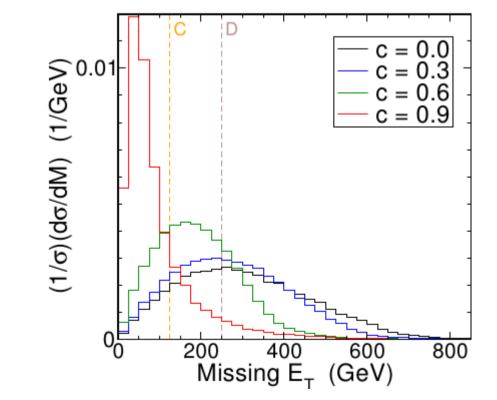


Figure 4: (Top left) M_R distributions for different values of the R^2 threshold for events in data selected in the MU box with the requirement of 0 b-tagged jets. The dotted lines show two independent exponential components fit to the the M_R distribution, (top center) value of the first exponential slope *S* from fits to the M_R distribution, as a function of the R^2 threshold (top right) value of the second exponential slope *S* from fits to the M_R distribution, as a function, as a function of the R^2 threshold. (Bottom) The corresponding in simulated W+jets events.

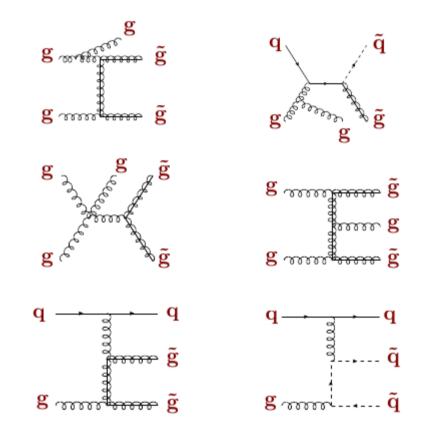




Figure 12: Observed (solid blue curve) and median expected (dot-dashed curve) 95% CL limits in the (m_0 , $m_{1/2}$) CMSSM plane with tan $\beta = 10$, $A_0 = 0$, sgn(μ) = +1 from the razor analysis. The \pm one standard deviation equivalent variations in the uncertainties are shown as a band around the median expected limit. Shown separately the observed HAD-only (solid crimson) and leptonic-only (solid green) 95% CL limits.

What if BSM is characterized by low ME_{T} , reduced H_{T} , smaller cross-sections?

This can happen if:

- $\Delta M(\widetilde{g}, LSP)$ is small
- ΔM(NLSP, LSP) is small (effect on cascades)
- Direct production of light stops/sbottoms (not covered here)



Is Jets+MET blind?

- Topological variables can help
- Searches have already left the "excess in tail-only" model
- Improvements in cuts, technologies
- At some point, it's matter of:
 - Statistics
 - Precision of SM background estimates

NLO ISR *(hard ISR)* emission in SUSY processes can help maximizing ME_{T} and

- $H_{_T} \rightarrow signal$ can be enhanced
 - How much do we know ISR?
 - How well is it modeled in simulations?
 - Necessity to move e.g. to
 MadGraph for signal samples
 - Can we "tag" it?

W. Beenaker, R. Hopker, M. Spira, P. Zerwas, hep-ph/9610490

1 SMS limits

CMS Preliminary Ranges of exclusion limits for gluinos and squarks, varying $m(\tilde{\chi}^0)$ T1: $\tilde{g} \rightarrow qq\tilde{\chi}^0$ α_T , 1.1 fb⁻¹, gluino T1: $\tilde{g} \rightarrow qq\tilde{\chi}^0$ MT2, 1.1 fb⁻¹, gluino T2: $\tilde{q} \rightarrow q \tilde{\chi}^0 \alpha_T$, 1.1 fb⁻¹, squark T1bbbb: $\tilde{g} \rightarrow bb \tilde{\chi}^0 \left[E_T + b, 1.1 \text{ fb}^{-1}, \text{ gluino} \right]$ T1bbbb: $\tilde{g} \rightarrow bb \tilde{\chi}^0$ MT2, 1.1 fb⁻¹, gluino T1lnu: $\tilde{g} \rightarrow qq\tilde{\chi}^{\pm}$ $l^{\pm}l^{\pm}$, 0.98 fb⁻¹, gluino T1Lh: $\tilde{g} \rightarrow qq \tilde{\chi}_2^0 | \tilde{\chi}^0 | l^{\pm} l^{\mp}$, 0.98 fb⁻¹, gluino T5zz: $\tilde{g} \rightarrow qq \tilde{\chi}_2^0 \qquad Z + E_T$, 0.98 fb⁻¹, gluino T5zz: $\tilde{g} \rightarrow qq \tilde{\chi}_2^0$ JZB, 2.1 fb⁻¹, gluino T5zz: $\tilde{g} \rightarrow qq \tilde{\chi}_2^0$ E_T + jets, 1.1 fb⁻¹, gluino T5zz: $\tilde{g} \rightarrow qq \tilde{\chi}_2^0$ α_T , 1.1 fb⁻¹, gluino T1tttt: $\tilde{g} \rightarrow tt \tilde{\chi}_1^0$ $l^{\pm} l^{\pm}$, 1.1 fb⁻¹, gluino 400 600 0 200 800 1000

For limits on $m(\tilde{g}), m(\tilde{q}) > > m(\tilde{g})$ (and vice versa). $\sigma^{\text{prod}} = \sigma^{\text{NLO-QCD}}$. $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}_2^0) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^0)}{2}$. $m(\tilde{\chi}^0)$ is varied from 0 GeV/ c^2 (dark blue) to $m(\tilde{g}) - 200 \text{ GeV}/c^2$ (light blue).

Mass scales (GeV/c^2)