Searches for Large Extra Dimensions at CMS

Alexey Ferapontov

Brown University

On behalf of the CMS Collaboration

SEARCH2012: Workshop on Characteristics of New Physics

University of Maryland, College Park, MD, March 17th - 19th, 2012

• Searches for Extra Dimensions (ED) at CMS:

- ADD model solution to the hierarchy problem
- Analyses:
 - Large ED in monophoton and monojet final state
 - LED and Randall-Sundrum gravitons in diphoton final state
 - LED in dimuon and dielectron final state
 - Microscopic black holes
- Conclusions

Search for Large Extra Dimensions in Monophoton Final State

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

Data and event selection:

- Data are collected with single photon triggers
- One isolated (tracker and calorimeter) photon

with $|\eta| < 1.44$ and $E_{T} > 145$ GeV, no track

match

- ♦ MET > 130 GeV
- within 3 ns in time with collision
- no jets with $p_T > 40$ GeV and no tracks

with $p_T > 20$ GeV; muon tracks veto

• **Signal:** Pythia8, scaled to NLO

CMS PAS EXO-11-096

Backgrounds

Estimate

 11.2 ± 2.8

• Simulated backgrounds:

- Main Z(vv)γ from Pythia6, scaled to
 NLO
- W(lv)γ MadGraph and NLO corrected (MCFM)
- γ+jet and diphoton Pythia6

Estimated from data:

Beam Halo	11.1 ± 5.6
Electron Mimics Photon	3.5 ± 1.5
$W\gamma$	2.8 ± 0.9
$\gamma+ ext{jet}$	0.5 ± 0.2
$\gamma\gamma$	0.5 ± 0.3
$\mathrm{Z}(uar{ u})\gamma$	42.4 ± 6.3
Total Background	71.9 ± 9.1
Total Observed Candidates	73

Source

Jet Mimics Photon

- Out-of-time templates are fit to data with no timing requirement
- Jets misidentified as photons

Alexey Ferapontov

Electrons faking photons – electron control sample scaled by (1-ε)/ε
 (efficiency of matching a pixel seed to calorimeter cluster ε = 0.994)

Transverse momentum and MET spectra

- Good agreement between data and expected background
- Same spectra can be searched for Dark Matter

Search for Large Extra Dimensions in Monojet Final State

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

• Data and event selection:

- Data are collected with jet $(p_T > 80) + MET$
 - $(E_T > 80 \text{ or } 95 \text{ GeV})$ triggers
- N \leq 2 particle flow jets with $p_T > 30$ GeV,
 - $p_T(j_1) > 110 \text{ GeV}, |\eta(j_1)| < 2.4, \Delta \phi(j_1, j_2) < 2.5$
- ◆ MET > 200 GeV
- veto events with isolated leptons or tracks with $p_T > 10 \text{ GeV}$

CMS PAS EXO-11-059

- **Signal:** Pythia8, scaled to NLO (order of 1.4
- -1.5), optimized MET > 350 GeV

Backgrounds

- W+jets from μ+jets events in control data sample:
 - 50 GeV < $M_T(\mu MET)$ < 100 GeV
 - Scaled by acceptance, efficiency
- Z+jets μμ+jets events:
 - 60 GeV < $M(\mu\mu)$ < 120 GeV
 - For invisible Z decay, rescale by:
 - $BR(Z \rightarrow \nu\nu)/BR(Z \rightarrow \mu\mu)$
 - Efficiency of lepton veto (MC)
 - MC acceptance and efficiencies
- Top, ttbar, QCD, Z+jets ⁶⁰ ⁷⁰ ⁸⁰ from MC, insignificant after selection cuts

 $M(\mu\mu)$ in Z control sample

Backgrounds

- W+jets from μ+jets events in control data sample:
 - 50 GeV < $M_T(\mu MET)$ < 100 GeV
 - Scaled by acceptance, efficiency
- Z+jets μμ+jets events:
 - 60 GeV < $M(\mu\mu)$ < 120 GeV
 - For invisible Z decay, rescale by:
 - BR(Z $\rightarrow \nu\nu)$ /BR(Z $\rightarrow \mu\mu$)
 - Efficiency of lepton veto (MC)
 - MC acceptance and efficiencies

• Top, ttbar, QCD, Z+jets –	
from MC, insignificant after selection cuts	

Background process	Events
$Z ightarrow u ar{ u}$	900 ± 94
W+jets	312 ± 35
tī	8 ± 8
$Z(\ell \ell)$ +jets	2 ± 2
QCD multijet	1 ± 1
Single t	1 ± 1
Total background	1224 ± 101
Observed in data	1142

Distributions

 Good agreement between observed data and expected background

95% CL Limits

95% CL limits as a function of M_D for $\delta = 2$ and 6

ATLAS monojet, 33 pb⁻¹ (arXiv:1106.5327): ۹

•
$$M_{\rm D} > 1.85 - 2.3$$
 TeV for $n = 4$ to 2

CMS monojet, 36 fb⁻¹ (PRL 107 (2011), 201804): ۹

• $M_s > 1.68 - 2.56$ TeV for n = 6 to 2

95% CL limits as a function of δ

CMS 2011 NLO 4.7 fb

CMS Preliminary

This result: ۲

Alexey Ferapontov

Search for Large Extra Dimensions in Diphoton Final State

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

• Data and event selection:

- Data are collected with diphoton triggers with individual photon $p_T > 33 60$ GeV
- Two isolated photons with $|\eta| < 1.44$ and $p_T > 70$ GeV, no track match
- $M(\gamma\gamma) > 140 \text{ GeV}$

• Signal:

- ADD $\gamma\gamma$ is simulated with Sherpa; NLO K-factor = 1.6 ± 0.1. Use signal MC to optimize M($\gamma\gamma$) > 900 GeV cut
- RS $\gamma\gamma$ is simulated with Pythia, NLO K-factor = $f(M(\gamma\gamma)) = 1.6 1.8$. Windows around each M₁ containing 96 - 97% of signal acceptance

PRL 108 (2012), 111801

Backgrounds highlights:

- Dominant irreducible SM diphoton production is estimated with Pythia, NLO K-factor = 1.7 – 1.1 (DIPHOX); 15% systematics from K-factor variation with M(γγ)
- Data-driven method to estimate jet- γ fake rate: 7 2% at 70 120 GeV
- Fake rate is applied to low-mass background-dominated samples to estimate multijet and jet+photon backgrounds (small in signal region)

Systematic uncertainties:

	Value	Rel. Uncertainty
Int. Luminosity	2.2 fb ⁻¹	4.5%
Signal Eff.	76.4%	12.6%
Signal K-factor	1.6 – 1.8	6%
Bkg. K-factor	1.7 – 1.1	15%

Data Yields

> 2.2 fb⁻¹

Signal cross section (S) parameterization as a function of η_G and $1/M_S^4$

• **Upper 95% CL limit on S = 3 fb**

Alexey Ferapontov

🕮 🕮 BROWN

• CMS diphotons, 36 pb⁻¹ (JHEP 5 (2011), 85):

• $M_s > 1.31 - 2.23$ TeV for n = 7 to 3

• D0 diphotons+dielectrons, 1.05 fb⁻¹ (PRL 102 (2009), 051601):

• $M_s > 2.09$ for n = 2

• This result (PRL 108 (2012), 111801):

K factor	CRW	Hev	wett			H	LZ		
K lactor	GIV	pos.	neg.	$n_{\rm ED}=2$	$n_{\rm ED}=3$	$n_{\rm ED}=4$	$n_{\rm ED} = 5$	$n_{\rm ED}=6$	$n_{\rm ED}=7$
1.0	2.94	2.63	2.28	3.29	3.50	2.94	2.66	2.47	2.34
1.6	3.18	2.84	2.41	3.68	3.79	3.18	2.88	2.68	2.53

Previous: ATLAS dileptons, 1.08 and 1.21 fb⁻¹ (arXiv:1108.1582): ۲ • $M_1 > 1.63$ for $k/M_{p_1} = 0.1$

Exclusion region for RS1 model RS graviton σ [pb] median expected 68% expected 0.1 95% expected ک≀ 95% CL Exclusion 0^{-1} $G_{KK} \tilde{k} = 0.01$ Coupling Electroweak 95% CL Exclusion 95% CL limit 0.08 Λ_ > 10 TeV **CMS Preliminary** 2.2 fb⁻¹ at 7 TeV 0.06 0.04 10⁻² CMS 2.2 fb⁻¹ at 7 TeV 0.02 800 1000 1200 1400 1600 1800 2000 0 600 1400 1000 1200 1600 1800 M₁ [GeV] M₁[GeV] Ĩ 0.01 0.020.04 0.05 0.100.11 0.030.06 0.070.08 0.09 M_1 [TeV] 0.86 1.131.27 1.39 1.501.591.671.741.801.84 1.88

Limits on cross section for $k/M_{Pl} = 0.01$

Alexey Ferapontov

Search for Large Extra Dimensions in Dilepton Final State

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

• Data and event selection:

- Data are collected with single muon (p_T
 - > 15 40 GeV) or dielectron/diphoton

 $(p_T > 33 \text{ GeV})$ triggers

arXiv:1202.3827v1/hep-ex

Submitted to PLB

- Two isolated muons with $|\eta| < 2.1$ and $p_T > 45$ GeV, with hits in both tracker and muon chambers, not exactly back-to-back
- Two isolated (in tracker and calorimeter) electrons with $p_T > 35$ (40) GeV in barrel (endcap), track matched to calorimeter cluster
- Using signal MC, optimized dilepton mass M(ll) > 1.1 TeV in both electron and muon channels

Backgrounds:

🕮 🕮 BROWN

- Dominant irreducible SM Drell-Yan.
 - Muons: MC@NLO with NNLO QCD (FEWZ) corrections = 1.03 ± 0.03 .
 - Electrons: Pythia6, normalized to Z peak in data.
 - Both: NLO EWK (Horace) corrected (0.90 or 0.92 ± 0.06)
- Smaller ttbar, tW, diboson: from MadGraph and Pythia6 (cross-checked with background-dominated control sample in data)

Signal – Pythia6, corrected for NLO (K-factor 1.3) Systematic uncertainties:

Systematic uncertainty	Uncertainty	Uncertainty
	on signal $(\%)$	on background $(\%)$
Integrated luminosity	4.5	4.5
Trigger and reconstruction efficiency	$4 \ (\mu\mu), \ 3 \ (ee)$	$3 (\mu \mu), 3 (ee)$
Muon momentum resolution	1	5
Electron energy scale	1 - 3	1 - 3
Drell–Yan PDF uncertainties		13
Drell–Yan higher order corrections	1	10

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

Data Yields

Observed and expected N events comparison ADD signal K-factor set to 1.0 here

	$\mathcal{C} = 2.3 \mathrm{fb}^{-1}$			ee, L	$\mathcal{C} = 2.1 \mathrm{fb}^{-1}$			
Mass	N _{obs}	Background	Signal exp.	Mass	N _{obs}	Background	Signal exp.	
region [TeV]		expectation	$\Lambda_T=2.8\text{TeV}$	region [TeV]		expectation	$\Lambda_T=2.8\text{TeV}$	
Control regio	ns			Control regions				
0.14-0.20	3723	3690±300	-	0.12-0.20	6592	6598 ± 530	-	
0.20-0.40	1674	1605 ± 160	-	0.20-0.40	1413	1301 ± 120	-	
0.40-0.60	131	122±13	-	0.40-0.60	88	103 ± 11	-	
0.60-0.80	16	21±3	-	0.60-0.80	21	18±3	-	
0.80-1.10	8	5±1	0.8	0.80–1.10	7	6±1	0.6	
Signal region			Signal region					
> 1.10	0	1.0±0.2	3.2	> 1.10	0	1.3 ± 0.2	2.7	

- Good agreement between data and simulation
- No events observed in signal region (> 1.1 TeV)

Alexey Ferapontov

Dielectron and dimuon invariant mass spectra

- Good agreement between data and simulation
- No events observed in signal region (> 1.1 TeV)

KK Gravitons in Dileptons – 95% CL Limits

Alexey Ferapontov

Search for Black Holes and String Balls in Energetic Multiparticle Final State

• Data and event selection:

arXiv:1202.6396v1/hep-ex Submitted to JHEP

- Data are collected with $H_T (H_T = \sum p_{T}^{jets} > 150 650 \text{ GeV})$ triggers
- Jets (akT5Calo) energy deposits in ECAL/HCAL in $|\eta| < 2.6$, quality cuts to suppress noise, latest corrections applied; MET Calo
- Electrons/photons isolated energy deposits in ECAL in |η| < 2.4, w/
 (e) or w/o (γ) hits in silicon
- Muons matching tracks in silicon and muon chambers in |η| < 2.1;
 isolated in tracker
- Construct $S_T (\sum p_T + MET)$ and Multiplicity (N, number of reco'ed objects, MET not included) for objects (and MET) with $p_T > 50$ GeV
- Require S_T above trigger turn-on and N > 1 (mostly jets)

• Signal samples (more than 700 points total):

Table 1: Signal Monte Carlo samples and generators used in the analysis.

Sample description	BLACKMAX	CHARYBDIS	QBH
nonrotating BH	YES	YES	NO
Rotating BH	YES	YES	NO
Rotating BH with mass and			
angular momentum loss	YES (10% loss)	YES (18 – 30% loss)	NO
Rotating BH, low multiplicity regime	NO	YES	NO
Boiling remnant	NO	YES	NO
Stable remnant	NO	YES	NO
String balls	YES	NO	NO
Quantum BH	NO	NO	YES

Backgrounds:

- Dominant multijet QCD
- ttbar, $\gamma/W/Z$ +jets negligible after selection cuts

S_{T} in inclusive multiplicities bins

Alexey Ferapontov

• High-S_T limits approach 0.6 fb (×130 better than 2010 pub.)

Alexey Ferapontov

💷 🕮 BROWN

ወ ወ

95% CL Limits: Semiclassical Black Holes

• In terms of ADD parameters and BlackMax and Charybdis frameworks: exclude BH with $M_{min} = 3.9 - 5.3$ TeV for $M_D = 1.5 - 4$ TeV and n = 2 - 6

◆ Previous: CMS 36 pb⁻¹ (PLB 697 (2011) 434): M = 3.5 - 4.5 TeV

Alexey Ferapontov

95% CL limits on quantum BH and string ball masses

- Limits on minimum SB mass are 4.6 4.8 TeV
- Limits on minimum QBH mass are 3.8 5.2 TeV

◆ Previous: ATLAS dijets, 36 pb⁻¹ (arXiv:1103.3864): M = 0.75 – 3.67 TeV

🕮 🕮 BROWN

- All these searches made possible by the LHC thanks for high-quality data!
- Searches for Extra Dimensions are ongoing
 - No evidence of new physics yet
 - Many interesting results on 2011 data have been obtained
 - Most of them give best limits to date
 - Public pages:
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO
- Waiting for 8 TeV data stay tuned!

• Thanks to my colleagues for the results I've shown today

• Thanks to SEARCH2012 Organizers!

BACKUP

Large Hadron Collider

- proton-proton collider with $\sqrt{s} = 7$ TeV
- 3.5e33 cm⁻²s⁻¹ achieved integrated luminosity
- > 5 fb⁻¹ delivered to experiments (Thanks LHC!!)

Alexey Ferapontov

SEARCH2012, College Park, March 17th-19th, 2012

31 Nations, 150 Institutions, 1870 Scientists

Alexey Ferapontov

- Universe is (3+1)-dim:
 - Planck scale O(10¹⁶ TeV)
 - EWK scale O(0.1 1 TeV)
- Hierarchy problem:

- Gravity is much weaker than EWK interactions
- Possible solution ADD extra dimensions (Arkani-Hamed,

Dimopoulos, Dvali – *PLB* **429** (1998) 263):

- Gauge interactions are localized on (3+1)-dim brane
- Gravity (strong!) propagates in *n* flat extra-dimensions
 compactified on torus or sphere with radius *r*
- True Planck scale (M_D): M_D = O(TeV) $M_{Pl}^2 = 8\pi M_D^{n+2} r^n$

Kaluza-Klein (KK) graviton exchange:

Gives raise to diphoton/dilepton cross section

🔲 🕮 BROWN

- Non-resonant production continuum spectrum of diphotons, dimuons, and dielectrons
- Sum of all KK diverges need an UV cutoff M_s
- Virtual graviton effects parameterized by $\eta_G = \mathcal{F}/M_S^4$, where

$$\mathcal{F} = 1 \quad (\text{Guidice, Rattazzi, and Wells, GRW [5]}),$$

$$\mathcal{F} = \begin{cases} \log\left(\frac{M_{\text{S}}^2}{\hat{s}}\right) & \text{if } n_{\text{ED}} = 2 \\ \frac{2}{(n_{\text{ED}} - 2)} & \text{if } n_{\text{ED}} > 2 \end{cases} \quad (\text{Han, Lykken, and Zhang, HLZ [6]}),$$

$$\mathcal{F} = \pm \frac{2}{\pi} \quad (\text{Hewett [7]}),$$

Production of Randall-Sundrum (RS1) gravitons:

- Single warped ED (size r_c , k is curvature) exists, separating two branes
- Apparent Planck scale

 $\Lambda_{\pi} = \overline{M}_{\text{Pl}} e^{-kr_c \pi} = O(\text{TeV}) \text{ for } kr_c \sim 10$

- Gives raise to resonant diphoton cross section
- Resonant production towers of KK excitations
- Model parameters: mass of the first excited

mode M₁ and dimensionless coupling

 $\tilde{k} \equiv k/\overline{M}_{\rm PL} (0.01-0.1)$

🖲 BROWN

• Strong gravity in extra dimensions allows for formation of micro black holes with size r_s:

$$r_{S} = \frac{1}{\sqrt{\pi}M_{D}} \left[\frac{M_{BH}}{M_{D}} \frac{8\Gamma(\frac{n+3}{2})}{n+2} \right]^{\frac{1}{n+1}}$$

- Thermal decay via Hawking radiation into all kinds of particles (75% quarks/gluons; 25% the rest, e.g. photons, leptons, gauge bosons, H)
- Cross section (PDG definition) ~ πr_s^2 , up to few hundred pb with extra dimensions
- Semi-classical approximation: $M_{BH} > M_{min} > M_{D}$

- What if $M_s < M < M_{min} \sim M_s / g_s^2$?
 - Proposed by Dimopoulos and Emparan (*PLB 526 (2002) 393*)
 - GR breaks this is string theory now!
 - A string ball forms with cross section:

$$\sigma \sim \begin{cases} \frac{g_s^2 M_{SB}^2}{M_s^4} & M_s \ll M_{SB} \le M_s/g_s \,, \\ \frac{1}{M_s^2} & M_s/g_s < M_{SB} \le M_s/g_s^2 \\ \frac{1}{M_P^2} \left(\frac{M_{BH}}{M_P}\right)^{\frac{2}{n+1}} & M_s/g_s^2 < M_{BH} \,. \end{cases}$$

- Properties are similar to semi-classical black hole
- Search strategy for both: high-multiplicity (5 6 objects on average) energetic final state

Quantum BH properties:

- Relatively light (typically, $M_D < M < 3M_D$)
- QBH evaporates faster than it thermalizes
- Result: non-thermal decay into a pair of jets
 - Low multiplicity energetic final state

Diphotons: RS1

Limits on cross section for $k/M_{Pl} = 0.05$ Limits on cross section for $k/M_{Pl} = 0.1$

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

Dileptons

	$\mu\mu,$,	$\mathcal{L} = 2.3 \mathrm{fb}^{-1}$			ee, A	$\mathcal{L} = 2.1 \text{fb}^{-1}$		
Mass	$N_{\rm obs}$	Background	Signal exp.	Mass	$N_{\rm obs}$	Background	Signal exp.	
region [TeV]		expectation	$\Lambda_{\rm T} = 2.8 { m TeV}$	region [TeV]	expectation A		$\Lambda_{\rm T} = 2.8 {\rm TeV}$	
Control region	ns			Control regions				
0.14-0.20	3723	3690 ± 300	-	0.12–0.20	6592	6598 ± 530	_	
0.20-0.40	1674	1605 ± 160	-	0.20 - 0.40	1413	1301 ± 120	-	
0.40-0.60	131	122 ± 13	-	0.40-0.60	88	$103{\pm}11$	-	
0.60-0.80	16	21±3	-	0.60-0.80	21	18 ± 3	-	
0.80-1.10	8	5 ± 1	0.8	0.80-1.10	7	6 ± 1	0.6	
Signal region				Signal region				
> 1.10	0	$1.0{\pm}0.2$	3.2	> 1.10	0	1.3 ± 0.2	2.7	

ADD K-factor	Λ_T [TeV] (GRW)	$M_{\rm s}$ [TeV] (HLZ)					
		n=2	n = 3	n = 4	n = 5	n = 6	n = 7
$\mu\mu$, ee, and $\gamma\gamma$							
1.3 ($\mu\mu$ and ee), 1.6 ($\gamma\gamma$)	3.3	4.1	3.9	3.3	3.0	2.8	2.6

	90% CL	Limits	$95\%~{ m CL}$	Limits	$M = [C \circ V]$	90% CL	Limits	95% CL	Limits
M_{DM} [GeV]	$\sigma~[{ m fb}]$	$\Lambda \; [{ m GeV}]$	$\sigma~[{ m fb}]$	$\Lambda \; [{ m GeV}]$		$\sigma [{ m fb}]$	$\Lambda [{ m GeV}]$	$\sigma [{ m fb}]$	$\Lambda [{ m GeV}]$
1	17.6(17.1)	543 (546)	22.2(20.3)	512(523)	1	16.8(16.4)	549~(553)	$21.3\ (19.5)$	518 (529)
10	16.6(16.1)	550 (554)	20.9(19.2)	519~(531)	10	16.8(16.4)	549~(552)	$21.3\ (19.5)$	517~(529)
100	16.4 (15.9)	532 (536)	20.7(18.9)	502~(513)	100	$16.8\ (16.3)$	546~(550)	$21.2\ (19.4)$	515 (526)
200	16.5(16.1)	488(491)	20.9(19.1)	460(470)	200	16.8(16.4)	527~(530)	$21.3\ (19.5)$	497~(508)
500	16.1(15.7)	344(346)	20.4(18.6)	324(332)	500	$16.1 \ (15.6)$	425~(428)	$20.3\ (18.6)$	401 (410)
1000	16.4(15.9)	165(166)	20.7(18.9)	156(159)	1000	16.6(16.1)	235~(237)	20.9(19.2)	222 (227)

Candidate Event

CMS Experiment at LHC, CERN Data recorded: Sun Apr 24 22:57:52 2011 CDT Run/Event: 163374 / 314736281 Lumi section: 604

Monojets

Table 4: Sources of systematic uncertainty and their contribution to the total uncertainty on the W+jets background.

Source of Uncertainty	Size(%)
Statistics (N _{obs})	2.9
Background (N _{bgd})	3.9
Acceptance (A)	7.7
Selection efficiency (ϵ)	6.8
Total	11.3

Table 2: Sources of systematic uncertainty and their fractional contributions to the total uncertainty on the $Z \rightarrow \nu \nu$ background.

Source of Uncertainty	Size(%)
Statistics (N _{obs})	9.5
Acceptance (A)	3.7
Selection efficiency (ϵ)	2.1
Ratio (R)	0.3
Total	10.4

Major systematic uncertainties on signal

Jet energy scale	10%
PDF	2 – 7%
ISR/FSR in Pythia8	2%
Pileup	3%

Alexey Ferapontov SEA

Upper limits on the dark matter-nucleon scattering cross section

Alexey Ferapontov

Candidate Event

$p_T = 574 \; GeV, MET = 598 \; GeV$

Alexey Ferapontov SEARCH2012, College Park, March 17th-19th, 2012

Black Holes

Independence of S_T shapes of final-state multiplicities

Alexey Ferapontov

SEARCH2012, College Park, March 17th-19th, 2012

Alexey Ferapontov

