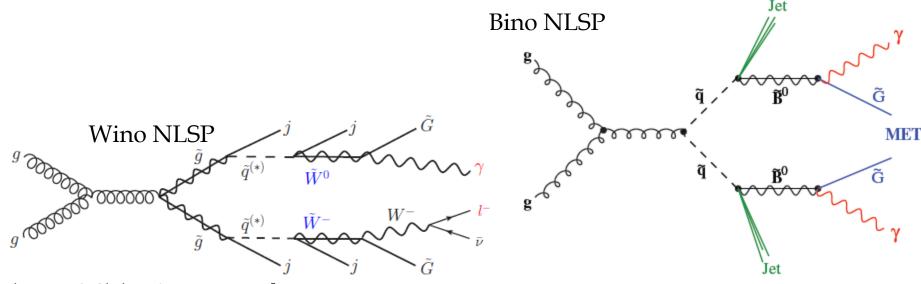


SUSY searches in _{γ+MET/b+MET at CMS}


Joshua Thompson, Cornell University On behalf of the CMS Collaboration 17 March 2012 SEARCH workshop, U of Maryland

Analyses

- SUSY in γ+MET
 - Results with 4.7 fb⁻¹
 - *γ*+jets+MET, *γγ*+jet(s)+MET (SUS-12-001)
- SUSY in b+MET
 - Results with 1.1 fb⁻¹
 - b+jets+MT2 (SUS-11-005)
 - b+jets+MET (SUS-11-006)

γ+MET: example diagrams

- General Gauge Mediation SUSY scenario
 - Lightest SUSY particle is the gravitino G~
 - Phenomenology depends on the NLSP type

[[]Ruderman & Shih: arXiv:1103.6083]

γ+MET: Signatures and backgrounds

NLSP type	γ + 2 jets + $E_{\rm T}^{\rm miss}$	$\gamma\gamma$ + jet + $E_{\rm T}^{\rm miss}$
Bino	$jets + \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow jets + \gamma + Z + \tilde{G}\tilde{G}$	$ ext{jets} + ilde{\chi}_1^0 ilde{\chi}_1^0 o ext{jets} + \gamma \gamma + ilde{G}$
Wino	jets + $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow$ jets + γ + Z + $\tilde{G}\tilde{G}$ jets + $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} \rightarrow$ jets + γ + W [±] + $\tilde{G}\tilde{G}$	$\mathrm{jets} + \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow \mathrm{jets} + \gamma \gamma + \tilde{\mathrm{G}}\tilde{\mathrm{G}}$

Signatures

- ≥ 2 photons, ≥ 1 jet, MET
- □ \geq 1 photon, \geq 2 jets, MET
- Backgrounds
 - QCD: mutltijet production with or without real photons
 - MET from mismeasurement of jets
 - Electroweak: $W \rightarrow ev$ with fake photons
 - □ ≥1 photon analysis only: W, Z, ttbar with real FSR, ISR photons

γ+MET: Event selection

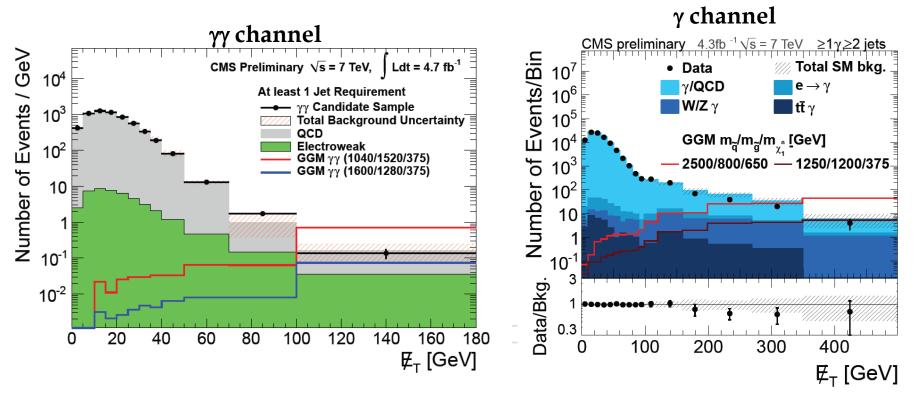
- Photon thresholds defined by the trigger
 - 2γ: diphoton trigger (36, 22 GeV online)
 - \rightarrow analysis selection of $E_{\gamma 1} > 40$ GeV, $E_{\gamma 2} > 25$ GeV
 - 1γ : photon (70 GeV online)+ H_T trigger
 - \rightarrow analysis selection of $E_{\gamma} > 80 \text{ GeV}$
- Jets
 - Particle flow reconstruction, pileup correction applied
 - $p_T > 30 \text{ GeV}$, $|\eta| < 2.6$, pass quality requirements
 - 2γ: ≥1 jet
 - $1\gamma: \ge 2$ jets, $H_T > 450$ GeV
- MET (particle flow)
 - 2γ: MET>50 GeV
 - 1γ: MET>100 GeV
- Leptons
 - No veto or requirements on leptons in the event
 - Want to avoid vetoing signal with W/Z decays to leptons!

γ +MET: details on photon selection

- |η|<1.4 (barrel ECAL)
- Isolation
 - Total energy in tracker and calorimeters within $\Delta R=0.3$ must be <6 GeV after correcting for pileup
- Quality
 - Cluster shape and HCAL energy requirements
 - Isolated photon candidates failing quality criteria are called "fakes"
 - Mostly jets with EM fluctuation
 - Used in forming control samples
- Pixel match
 - Isolation and quality criteria select both electrons and photons
 - Match to pixel detector \rightarrow electron candidate
 - No match to pixel detector \rightarrow photon candidate

γ+MET: QCD background estimation

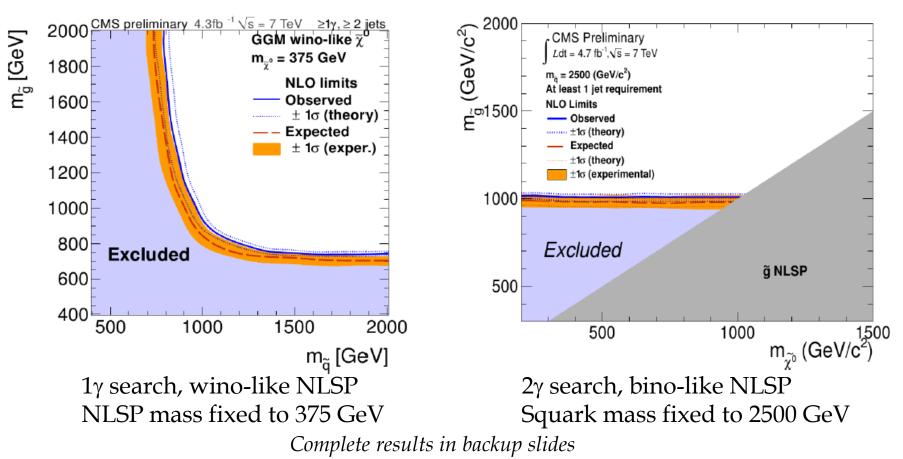
- Fake MET arises from mismeasurement of hadronic objects (jets) recoiling off of the EM objects (photons or fake photons)
 - 2γ analysis:
 - Use ff control sample
 - Data-driven reweighting of events to compensate for different p_T spectrum of the EM objects between control (ff) and signal (γγ) samples
 - MET shape taken from reweighted ff sample
 - Normalization taken from γγ sample at MET<20 GeV
 - Similar technique applied to $Z \rightarrow ee$ sample
 - Difference from ff result taken as a systematic
 - 1γ analysis:
 - Control sample with looser photon ID
 - Similar reweighting


γ+MET: Electroweak backgrounds

• 2γ analysis

- Main background: $W \rightarrow ev + radiated \gamma$
 - Real MET from neutrino in W decay
 - e fakes γ
- Measure fake rate $f(e \rightarrow \gamma)$ by comparing the number of $Z \rightarrow ee$ events in ee and $e\gamma$ samples, in bins of p_T
 - Weight a sample of $e\gamma$ events using the fake rate to get the number of fake 2γ events
- 1γ analysis
 - ttbar, W, Z all contribute
 - Portions with $e \rightarrow \gamma$ fakes estimated from data as above
 - Remaining contributions (ISR/FSR) from MC

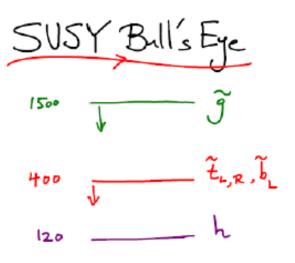
γ+MET: MET distributions


• Observed data in agreement with background predictions

Limits calculated by combining exclusive bins of MET 1γ: 6 bins starting at MET of 100 GeV 2γ: 6 bins starting at MET of 50 GeV

Interpretation in simplified models

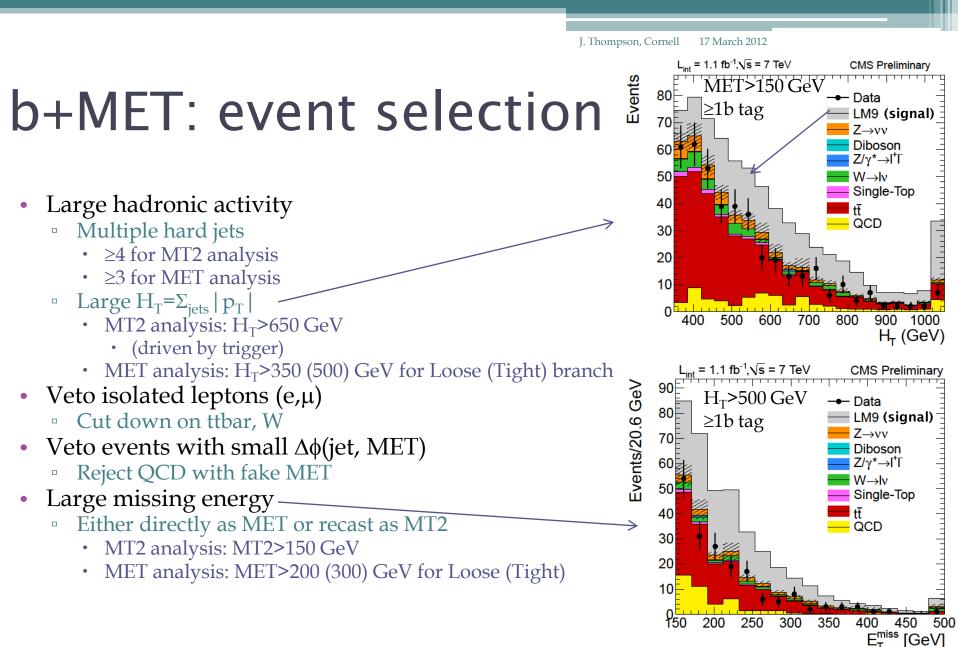
- Interpretations given for bino, wino-like NLSP
- *γ*, *γγ* channels set similar limits



γ+MET summary

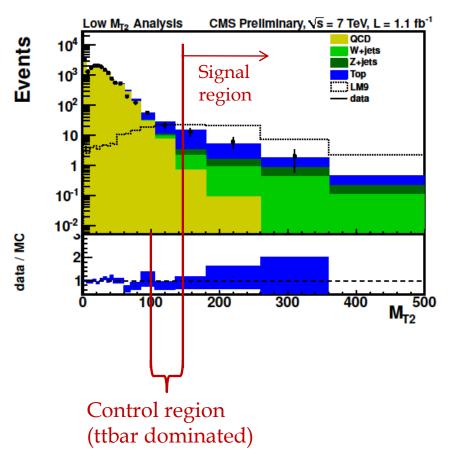
- Searches done with full 2011 dataset in 1γ , 2γ + MET channels
 - Main backgrounds predicted using data-driven methods
 - Observed data analyzed in bins of MET and found consistent with background
- Interpretation in terms of SUSY models with bino, wino-like NLSP for varying squark, gluino, and NLSP masses
 - Also interpreted in terms of Universal Extra Dimensions

b+MET: Introduction


- Many SUSY scenarios predict a light 3rd generation (naturalness) with light q~ heavier
- Add b-tag to inclusive searches
 - Cut background while keeping b~, t~ signal
 - This talk: hadronic searches with ≥3 jets (1.1 fb⁻¹)
 - Particularly sensitive to $g \sim \rightarrow bbX_0 \sim$
 - Tomorrow: same-sign dileptons + b tag (4.7 fb⁻¹) [Slava Krutelyov]
 - Better performance on t~

N. Arkani-Hamed https://indico.cern.ch/conferenceOtherVi ews.py?view=standard&confId=157244

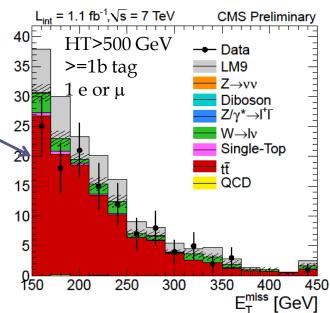
b+MET: Signature and Backgrounds


- Signature: jets + b-tag + MET
- Backgrounds:
 - ttbar \rightarrow bW bW \rightarrow bqq' blv
 - real MET from v
 - Smaller (suppressed by b-tag):
 - Z+jets with $Z \rightarrow vv$
 - Real MET, so irreducible
 - W+jets, single top
 - QCD (fake MET)

MT2 plus b-tag

b-tagging allows for looser MT2 selection

- MT2>150 GeV (400 GeV in inclusive analysis)
 - · Looser cut enhances sensitivity to some models
 - e.g. CMSSM test point LM9 has relatively soft missing energy distribution
- ttbar background estimate:
 - Use ttbar-dominated sample with 1 electron or 1 muon
 - Use MC efficiency numbers to move from 1 lepton → 0 lepton sample
 - Perform this method in control region 100<MT2<150 GeV
 - Compare prediction for 0 lepton sample to MC for 0 lepton sample; level of agreement quantified in the uncertainty
 - Scale from control region to signal region using MC, propagating uncertainties
- Result
 - Background = 10.6 ± 1.9 ± 4.8 events
 - Observed = 19 events
 - (LM9 signal = 42.9 events)



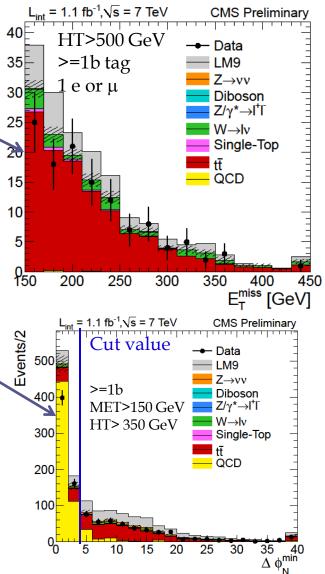
J. Thompson, Cornell 20 Oct 2011

vents/20 GeV

MET+b tag: background methods

- ttbar+W+t
 - Find MET shape in 1 lepton control sample
 - Normalize to ttbar-dominated region at medium MET (150<MET<200 GeV)
 - $(N_{high MET})^{0 lepton} =$
 - $(N_{medium MET})^{0 lepton} (N_{high MET}/N_{medium MET})^{1 lepton}$
 - Cross-check with independent method

vents/20 GeV


MET+b tag: background methods

- ttbar+W+t
 - Find MET shape in 1 lepton control sample
 - Normalize to ttbar-dominated region at medium MET (150<MET<200 GeV)
 - $(N_{high MET})^{0 lepton} =$

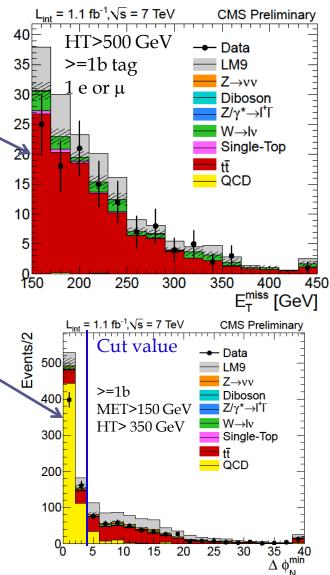
 $(N_{medium MET})^{0 lepton} (N_{high MET}/N_{medium MET})^{1 lepton}$

- Cross-check with independent method
- QCD
 - Novel resolution-normalized $\Delta \phi(j, MET)$ variable and MET are uncorrelated

 $(N_{pass})^{high MET} = (N_{fail})^{high MET} (N_{pass}/N_{fail})^{low MET}$

vents/20 GeV

MET+b tag: background methods


- ttbar+W+t
 - Find MET shape in 1 lepton control sample
 - Normalize to ttbar-dominated region at medium MET (150<MET<200 GeV)
 - $(N_{high MET})^{0 lepton} =$

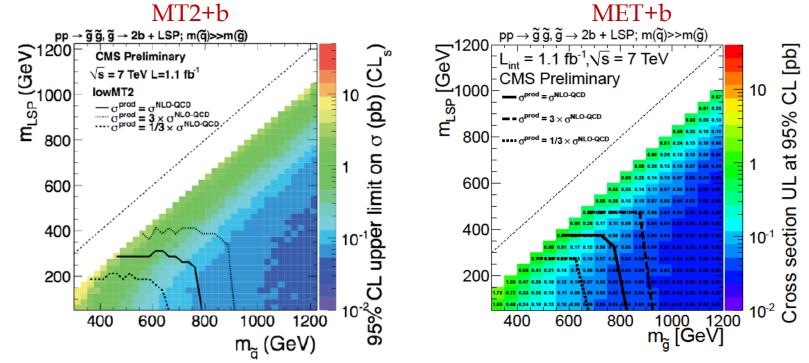
 $(N_{medium MET})^{0 lepton} (N_{high MET}/N_{medium MET})^{1 lepton}$

- Cross-check with independent method
- QCD
 - Novel resolution-normalized Δφ(j,MET) variable and MET are uncorrelated

 $(N_{pass})^{high MET} = (N_{fail})^{high MET} (N_{pass}/N_{fail})^{low MET}$

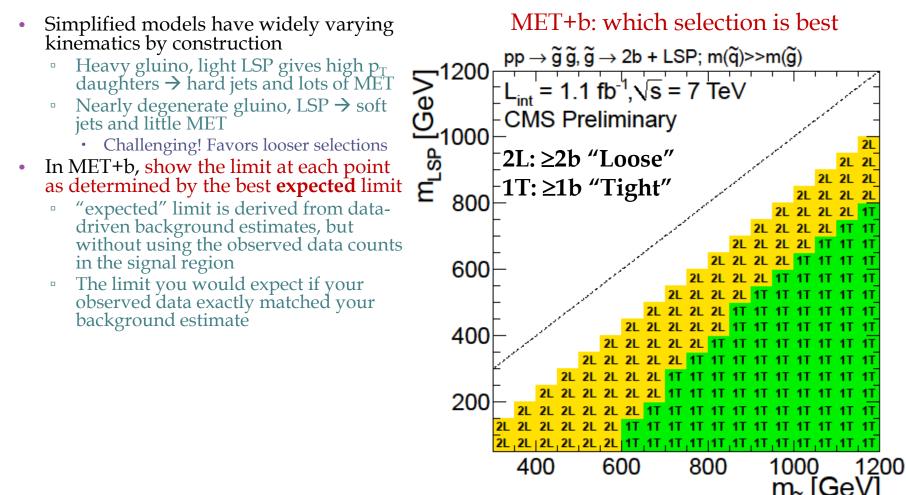
- $Z \rightarrow vv$
 - Data-driven translation of Z→ll control samples

MET+b: results


• Background predictions agree with data

H	<u>'>=2b Loose"</u> IT>350 GeV IET>200 GeV	<u>">=1b Tight"</u> HT>500 GeV MET>300 GeV
	\geq 2 b	\geq 1 b
QCD	$0.0 \pm 0.4^{+5.8}_{-0.0}$	$0.2 \pm 0.2^{+0.5}_{-0.2}$
top and W+jets	$24 \pm 7 \pm 5$	$13 \pm 5 \pm 4$
top and W+jets cross-check		$17.0 \pm 5.7 \pm 2.1$
$Z \rightarrow \nu \overline{\nu}$	$2.6 \pm 2.9 \pm 2.0$	$5.0 \pm 1.6 \pm 2.0$
Total SM	$25.8 \pm 7.4^{+7.8}_{-5.2}$	$18.2 \pm 5.3 \pm 4.5$
Data	30	20
SM MC prediction	35.7 ±1.3	25.1 ± 1.6
LM9 (CMSSM) signal	60.0 ± 2.5	27.7 ± 2.2

Not shown here: results of ">=1b Loose" and ">=2b Tight" selections. \rightarrow Also good agreement between SM prediction and data.


Interpretation in Simplified Models

- Simple topological model
 - □ $g^{-}g^{-} \rightarrow bbX^{-}bbX^{-}$
 - Exclusive production and decay
 - Set an upper limit on the cross section as function of m_{g~}, m_{X~}
 - (Also get excluded region based on NLO cross section)

→Similar sensitivity; MET+b does better in regions closer to the diagonal

Note on kinematics and selections

b+MET: Future directions

- Expect many more SUSY searches to add a b-tag requirement in the future
 - As advertised, the first of these is being presented tomorrow by Slava Krutelyov
 - The analyses shown here, plus others, are being updated on the full 2011 dataset
 - Key new developments:
 - Higher jet and/or b-tag multiplicity
 - More sophisticated analysis (multiple exclusive bins)
 - Challenges:
 - Dealing with higher trigger thresholds and pileup at the end of the 2011 run
 - Pileup even worse in 2012 a number of strategies are being pursued (particle flow and PU corrections in trigger)

J. Thompson, Cornell 17 March 2012

J. Thompson,

Extra slides

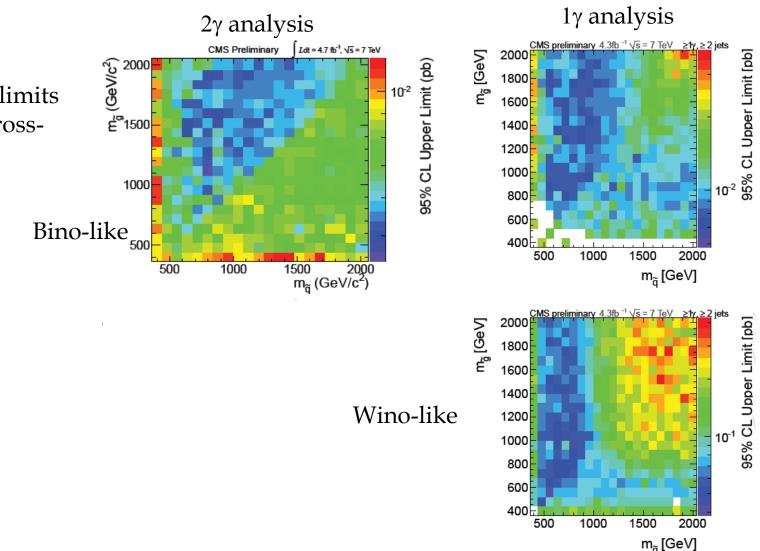
γ +MET: p_T spectrum reweighting

- Details on diphoton QCD estimate
 - QCD topology is EM objects (photons or electrons or photon fakes) with recoiling jets
 - Find PF jets associated with EM objects
 - Make a vector sum of the momenta of those PF jets
 - p_T is the transverse part of that vector sum
 - Plot that p_T spectrum for ff, $\gamma\gamma$ samples
 - Reweight ff sample to match the $\gamma\gamma p_T$ spectrum
 - Notes:
 - Using PF jets associated with EM objects found to do a better job than using the EM objects themselves (to get the right hadronic energy content)
 - Fake MET is dominated by the recoiling jets
 - This is true for both the signal (γγ) events and events with fake photons
- 1γ analysis:
 - Similar procedure, except no need for vector sum

γ+MET: background summary

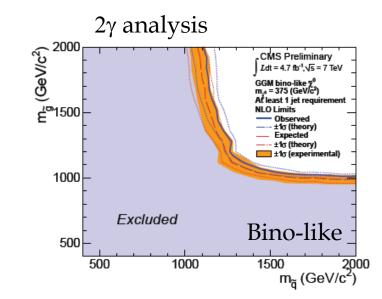
Table 2: The number of events with $E_T^{\text{miss}} \ge 100$ GeV from $\gamma\gamma$, ff, and $Z \rightarrow ee$ as well as the total number of background events with $E_T^{\text{miss}} \ge 100$ GeV using the ff data. We also show the contributions to the errors due to the re-weighting technique and normalization.

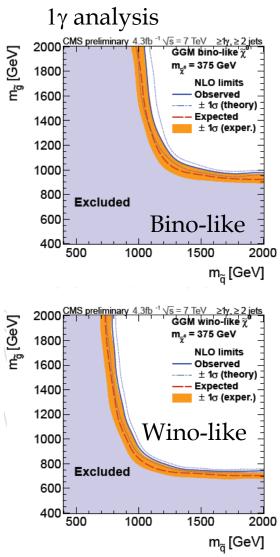
Туре	Events	scal. error	norm. error
$\gamma\gamma$ candidates	11		
<i>ff</i> QCD background	10.1 ± 4.2	± 0.3	± 0.03
ee QCD background	14.7 ± 3.1	± 0.1	± 0.03
EWK background	2.9 ± 1.0	± 0.0	± 0.9
Total background (ff)	13.0 ± 4.3		


Table 3: Resulting event yields for the ≥ 1 photon + ≥ 2 jet selection for three different signal regions ($E_T^{miss} > 100/200/350$ GeV). The FSR/ISR statistical errors are due to limited MC statistics.

	$E_T^{miss} \ge 100 \text{ GeV}$			$E_{\rm T}^{\rm miss} \ge 200 {\rm GeV}$			$E_{\rm T}^{\rm miss} \ge 350 {\rm GeV}$		
$\geq 1\gamma$, ≥ 2 jets	_	(stat.)	(syst.)		(stat.)	(syst.)	_	(stat.)	(syst.)
QCD (from data)	607.7	± 46.7	± 54.0	90.7	± 16.4	±9.9	6.8	± 4.1	± 0.8
$e \rightarrow \gamma$ (from data)	17.2	± 0.3	±7.2	3.5	± 0.2	± 1.5	0.4	± 0.01	± 0.2
FSR/ISR(W,Z)	27.6	± 3.2	±27.6	10.4	± 2.0	± 10.4	1.6	± 0.8	±1.6
$FSR/ISR(t\bar{t})$	3.8	±0.9	± 3.8	0.8	± 0.4	± 0.8	< 0.01	< 0.01	< 0.01
total SM estimate	656.4	± 46.9	±92.7	105.5	± 16.5	±22.6	8.7	± 4.2	± 2.5
Data	615			63			4		

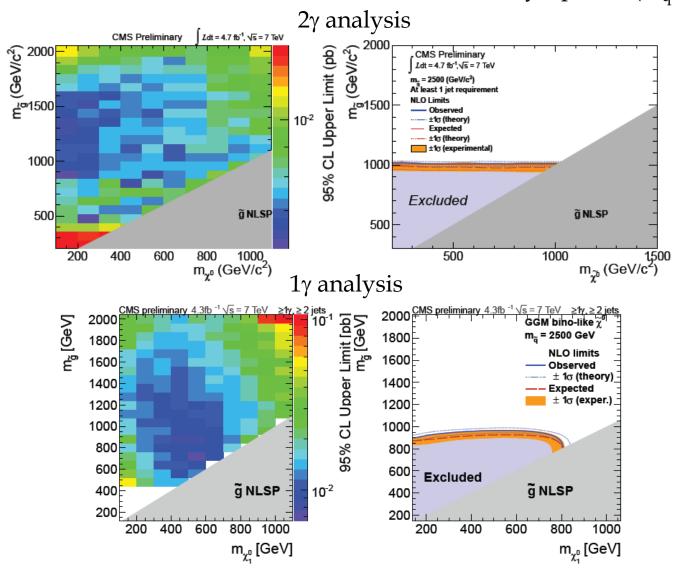
J. Thompson, Cornell 17 March 2012


γ+MET: Interpretation in simplified modelsNLSP fixed to 375 GeV


95% CL upper limits on the signal crosssection

J. Thompson, Cornell γ +MET: Interpretation in simplified models • NLSP fixed to 375 GeV

Exclusion contours based on UL values on previous slide



17 March 2012

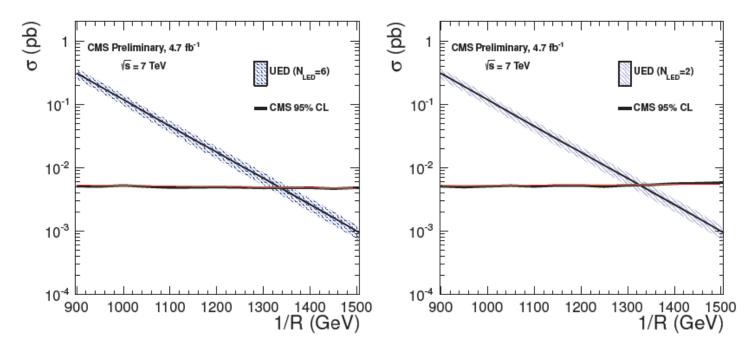
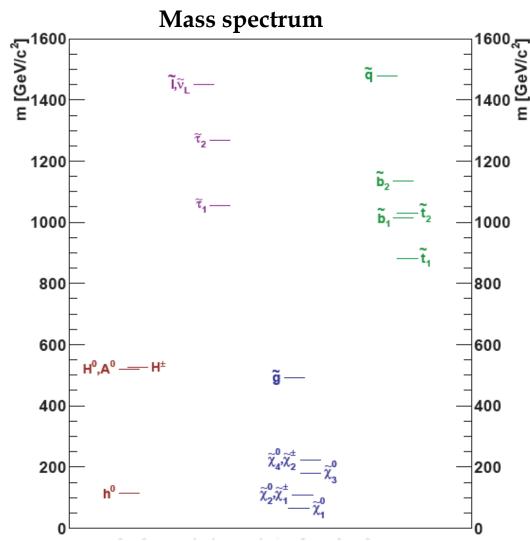
J. Thompson, Cornell 17 March 2012

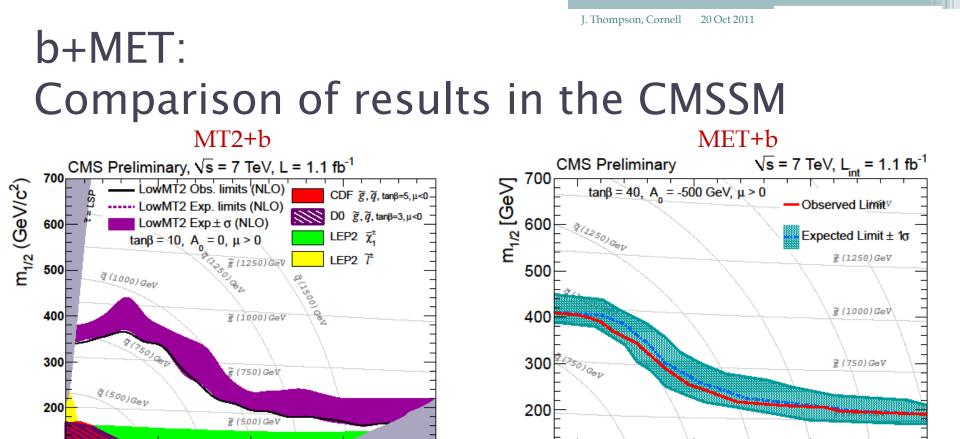
γ +MET: bino-like NLSP Heavy squarks (m_{q~}=2500 GeV)

28

γ+MET: Universal Extra Dimensions

- Lightest Kaluza-Klein particle (KK photon) decays to photon+gravitino
 - 2γ + MET final state


Figure 7: The UED cross section upper limit for 6 (left), and 2 (right) LEDs at the 95% C.L. is compared with UED LO production cross sections. Intersection of the central cross section value implies exclusion of all values of 1/R < 1335 (1323) GeV for 6 (2) LEDs. The shaded region shows uncertainty due to PDFs and renormalization scale.

J. Thompson, Cornell 20 Oct 2011

Details of signal point "LM9"

- High m_0 , low $m_{1/2}$, high tan β
 - m₀=1450 GeV
 - $m_{1/2} = 175 \text{ GeV}$
 - $A_0 = 0 \text{ GeV}$
 - tan β=50
 - □ μ>0
- Light gluino, heavy squarks
 - ^a 3rd generation SM from decays of gluinos

Note: MT2+b is $\tan\beta=10$ while MET+b is $\tan\beta=40$ →ignoring this difference, limits are similar

500

1000

focus on that result

Note: >=1b "Tight" selection gives best

expected limit everywhere in CMSSM, so we

1500

2000

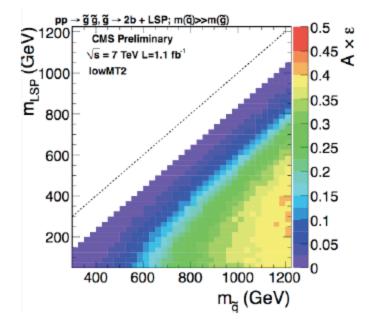
500

1000

1500

m₀ (GeV/c²)

31


2000

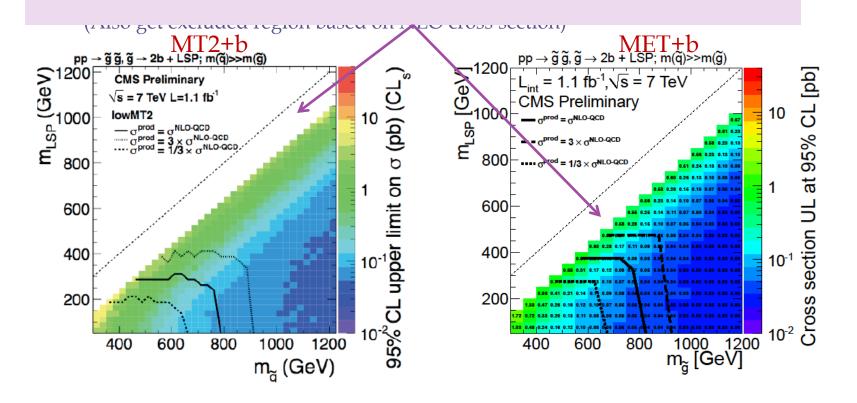
m₀ [GeV]

32

b+MET: Signal efficiency in 4b model

MT2+b

$pp \rightarrow \widetilde{g} \ \widetilde{g}, \widetilde{g} \rightarrow 2b \text{ + LSP}; \ m(\widetilde{q}) \text{>>} m(\widetilde{g})$ 1200 ¹²⁰⁰ 9 1000 مح 1000 ع ×ε [%] 40 $L_{int} = 1.1 \text{ fb}^{-1}, \sqrt{s} = 7 \text{ TeV}$ CMS Preliminary 35 30 < 800 13 18 18 18 25 17 23 29 24 29 34 20 600 29 33 35 35 37 -15 31 34 400 10 200 5 11 14 17 15 19 23 26 29 32 33 35 37 37 0 $\substack{1000 \\ m_{\widetilde{a}}} [GeV]$ 400 600 800 Shows efficiency of the


MET+b

selection used to make UL plot (best expected limit)

b+MET: Treatment of ISR

• Note: Region very near the diagonal is very sensitive to ISR.

At the moment we do not consider a systematic uncertainty due to ISR in these analyses, so we do not show results in this region.

b+MET: MC background expectations

Table 4: Expected background event yields and observed number of events in data for all relaxed cuts after preselection for events with at least one b-tagged jet.

MT2+b	Process	QCD	W+jets	Z+jets	Тор	Other	Total Bkg.	data
IVI I ZŦD	After full selection	16857.5	27.8	14.8	445.3	24.6	17370	17370
	MT2 > 80 GeV	58.8	7.5	5.5	61.4	0.0	133.3	131
	MT2 > 100 GeV	10.1	5.2	4.6	36.9	0.0	56.9	49
	MT2 > 120 GeV	3.0	3.6	3.9	23.3	0.0	33.8	26
	MT2 > 135 GeV	0.8	2.7	2.6	15.8	0.0	21.9	21
	MT2 > 150 GeV	0.2	2.2	1.8	10.8	0.0	15.0	19

Table 1: Number of data events and corresponding MC predictions for the loose ($H_T > 350 \text{ GeV}$, $E_T^{\text{miss}} > 200 \text{ GeV}$) and tight ($H_T > 500 \text{ GeV}$, $E_T^{\text{miss}} > 300 \text{ GeV}$) signal selections. MC results for the CMSSM test point LM9 are also shown. The MC uncertainties are statistical. The normalization is to 1143 pb⁻¹.

b
ł

	$(H_{\rm T}, E_{\rm T}^{\rm miss}) > (350, 200) {\rm GeV}$		$(H_{\mathrm{T}}, E_{\mathrm{T}}^{\mathrm{miss}}) >$	> (500,300) GeV
	≥ 1 b-jets	\geq 2 b-jets	\geq 1 b-jets	\geq 2 b-jets
Data	155	30	20	5
Total SM	183 ± 5	35.7 ± 1.3	25.1 ± 1.6	4.54 ± 0.37
tī	122 ± 2	28.9 ± 0.7	14.7 ± 0.8	3.49 ± 0.24
Single top	4.54 ± 0.38	0.77 ± 0.09	0.59 ± 0.15	0.12 ± 0.04
W+Jets	17.0 ± 2.1	1.21 ± 0.45	4.20 ± 1.28	0.42 ± 0.28
$Z \rightarrow \nu \overline{\nu}$	22.5 ± 0.5	2.23 ± 0.10	4.25 ± 0.20	0.43 ± 0.04
$Z/\gamma^* \rightarrow \ell^+ \ell^-$	0.17 ± 0.17	0.01 ± 0.01	0	0
Diboson	0.69 ± 0.07	0.10 ± 0.02	0.10 ± 0.02	0.006 ± 0.002
QCD	16.4 ± 3.9	2.5 ± 0.9	1.28 ± 0.40	0.08 ± 0.01
SUSY LM9	147 ± 5	60.0 ± 2.5	27.7 ± 2.2	10.1 ± 1.0

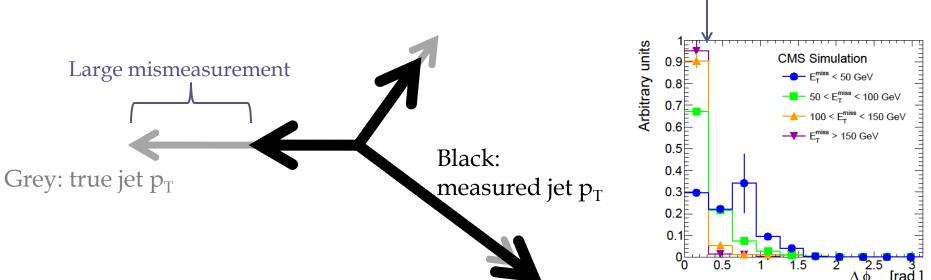
34

b+MET: Signal efficiency systematics

Table 17: Systematic uncertainties, in percent, on the efficiency of the LM9 signal. The "Other" category includes the trigger efficiency, the lepton veto, and the anomalous E_T^{miss} terms.

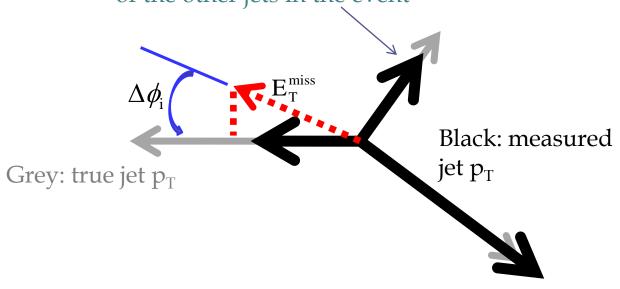
	Loose search region		Tight sea	arch region
Source	$\geq 1 b$	$\geq 2 b$	$\geq 1 b$	$\geq 2 b$
Jet energy scale	7.7	8.6	12.1	13.7
Jet energy resolution	0.1	0.3	3.0	4.2
Unclustered energy	2.0	1.6	5.7	7.5
Pileup	3.4	3.1	4.3	4.2
b-tagging efficiency	6.5	15.8	7.1	17.2
Parton distribution functions	11.1	11.2	11.8	12.1
Other	3.5	3.5	3.5	3.5
Luminosity	4.5	4.5	4.5	4.5
Total uncertainty	16.5	22.2	20.7	27.5

→JES, unclustered energy, b-tag eff, PDF are evaluated point-by-point across the CMSSM and simplified model planes
→Other uncertainties are fixed to LM9 values.

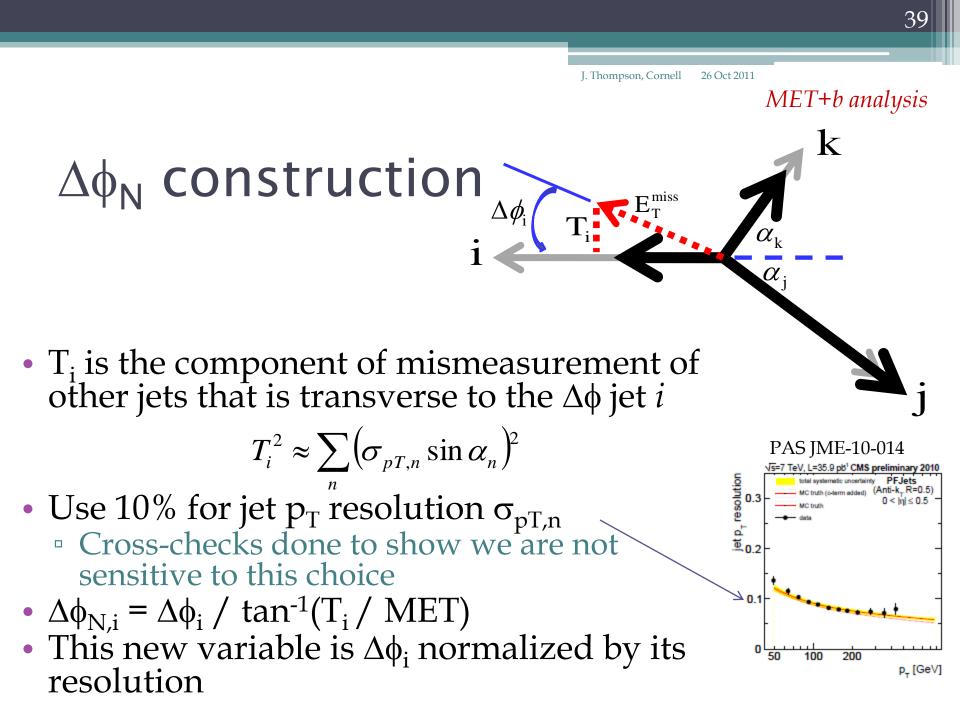

b+MET: Event selection details

• Jets: in both cases, particle flow R=0.5 anti-kT jets

- MT2+b:
 - p_T >20 GeV, $|\eta|$ <2.4, passing quality criteria
 - Note that HT is calculated with calorimeter-only jets while all other quantities use particle flow
 - p_T cuts on lead jets
- MET+b:
 - p_T >50 GeV, $|\eta|$ <2.4, passing quality criteria
 - HT is calculated using all jets passing the above requirements
 - For b jets, use $p_T > 30 \text{ GeV}$
- Leptons (particle flow):
 - p_T>10 GeV
 - $\mid \eta \mid$ <2.4 (plus veto of barrel/endcap transition for electrons)
 - Various quality and isolation requirements
- $\Delta \phi_{(N)}^{min}$ (jet, MET)
 - MT2+b: $\Delta \phi^{min} > 0.3$ for all jets pT>20 GeV, $|\eta| < 5$
 - MET+b: $\Delta \phi_N^{min} > 4$ for lead 3 jets passing criteria given above

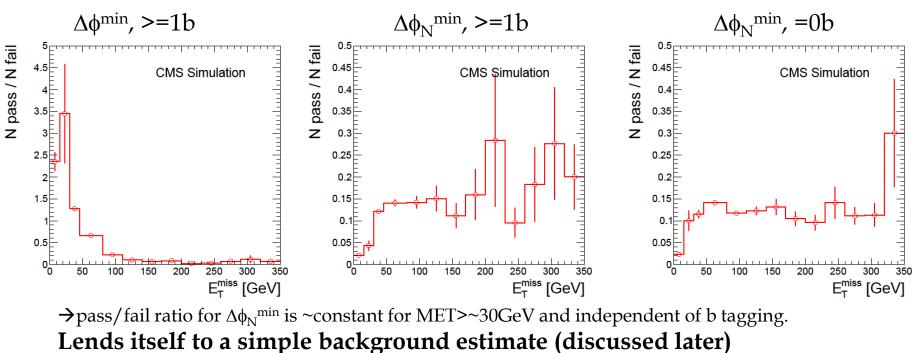

b+MET: Event selection: $\Delta\phi$ (jet, MET)

- QCD events can sneak into high MET region when a jet is severely mismeasured
 - Creates fake MET aligned with the jet
- Reject this background with angle $\Delta \phi$ (jet, MET)
 - In MT2+b, require $\Delta \phi_{\min}(\text{all jets, MET}) > 0.3$
 - In MET+b, use a slightly different variable
 - (more on the following slides)

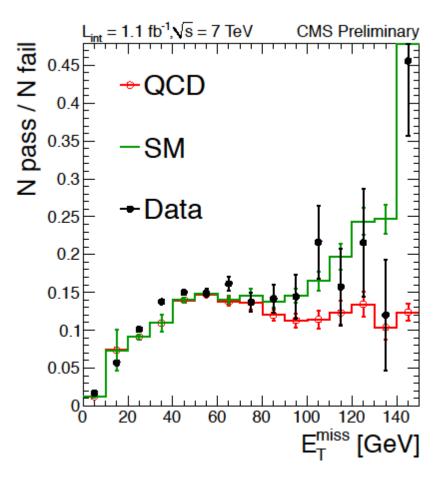


Motivation for $\Delta \phi_N$ (jet, MET)

- The standard $\Delta \phi$ (jet, MET) variable is great for rejecting QCD at high MET
 - But it is also highly correlated with MET (and MT2)
- For an event with a very badly measured jet, why is the angle $\Delta \phi$ (jet, MET) non-zero?
 - The MET direction is smeared by the small mismeasurements of the p_T of the other jets in the event

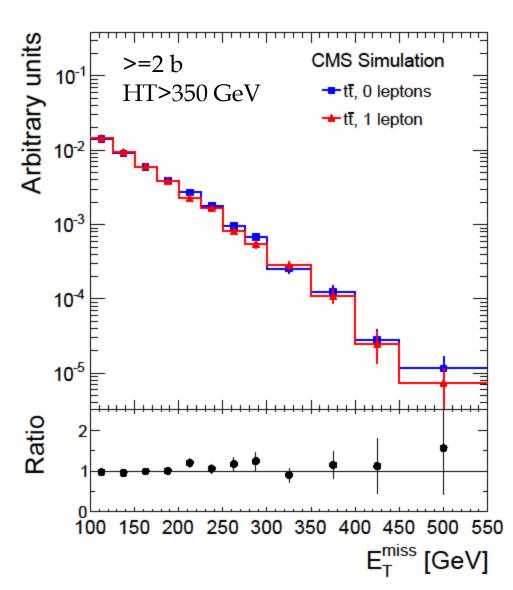


This smearing becomes less important as the big mismeasurement (hence MET) increases
→MET and Δφ(jet,MET) are correlated
we try to model this and construct an uncorrelated variable

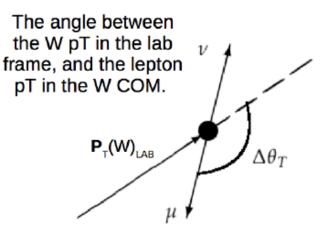

$\Delta \phi$ versus $\Delta \phi_N$

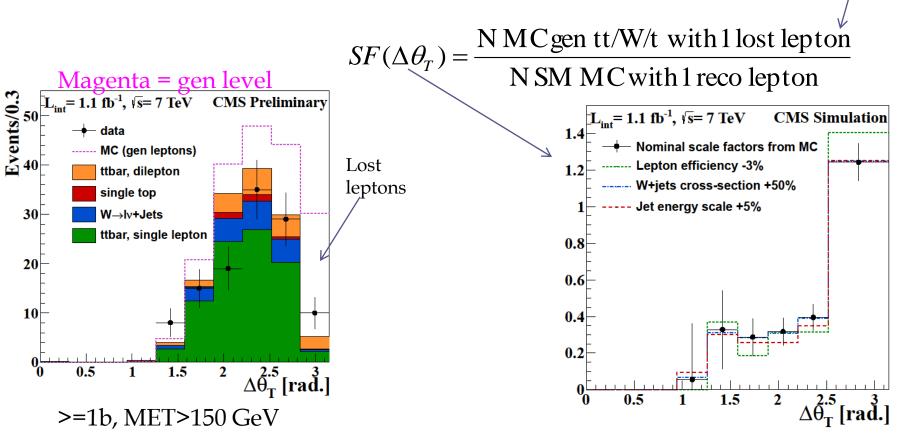
- Plot the ratio of events passing the Δφ cut to the ratio failing it, as a function of MET
 - This is a good way to judge the correlation
 - (flat means uncorrelated)

b+MET: QCD method in data

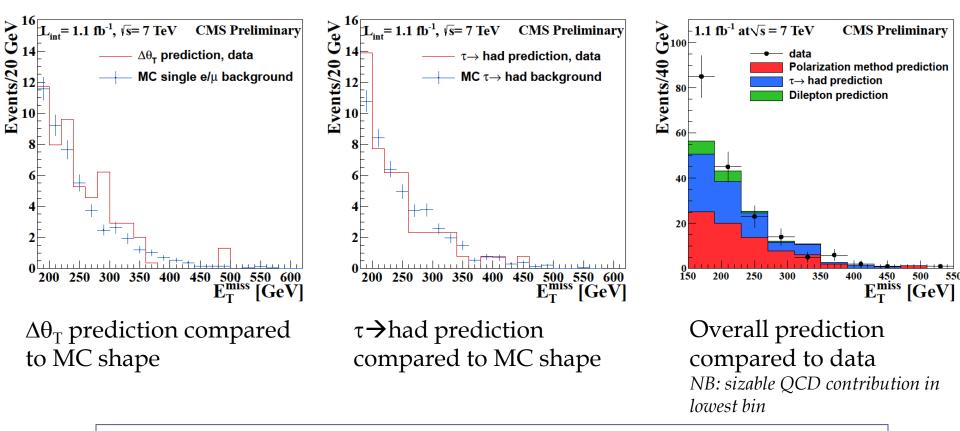

- Pass/fail ratio for $\Delta \phi_N^{min}$
 - Data compared to MC
 - Data collected with a prescaled HT-only trigger
 - 50-100 GeV region used for data-driven estimate

b+MET: tt/W/t background method details


- Method depends on MET spectrum being the same in 1 lepton and 0 lepton samples
 - Checked in MC works well
 - Have checked many effects that could be different in data and MC and find method should still work well in the data
 - Violation of this assumption is quantified and taken as a systematic error


Cross-check of ttbar+W+t with $\Delta \theta_{T}$

- For W \rightarrow e, μ , τ ($\tau \rightarrow$ e, μ) decays
 - Angular distribution of lepton w.r.t. $W, \Delta \theta_T$, depends on W polarization, which is well understood
 - $\Delta \theta_{\rm T} \, \text{low} \rightarrow \text{lepton is boosted forward,}$ neutrino goes backward \rightarrow lower MET
 - $\Delta \theta_{\rm T}$ high \rightarrow lepton softer and neutrino boosted forward \rightarrow higher MET
- For $W \rightarrow \tau$ ($\tau \rightarrow$ had) decays
 - Single muon control sample from μ+H_T trigger
 - Transform muon into a τ jet using a response template taken from MC
- For dileptonic decays
 - Dilepton control sample, scaled by an efficiency ratio taken from MC



ttbar+W+t cross-check: Method for decays with e or μ

- Start with single lepton control sample
- Rescale the MET distributions of the SL sample in bins of $\Delta \theta_{\rm T}$ using scale factors from MC
- Predicts both the shape and normalization of signal sample MET distribution

ttbar+W+t cross-check: **MET spectrum predictions** >=1b, Tight (HT>500 GeV) selection

Note: cross-check done only for Tight selection because trigger requirements preclude doing Loose selection

b+MET: $Z \rightarrow vv$ method notes

- Z→ll, l=e,µ is simple (efficiency factors mostly straightforward to extract from data) but statistics-limited
 - In loosest selection (>1b, Loose), can directly apply signal region cuts to Z→ll samples
 - In other cases, need to loosen kinematic selections and then scale final estimate using MC
 - This MC scaling has been checked in several ways, including a data-driven method where the nominal MET, HT cuts are used but the b-tagging is loosened, and the (nominal b tagger)/(loose b tagger) factor is taken from a data control sample