Muon Acceleration

J. Scott Berg
Brookhaven National Laboratory
Workshop on Muon Driven Colliders
January 25, 2022
Talk Overview

• Acceleration principles
• Accelerator types, from most efficient to least
 ◦ Pulsed synchrotrons
 ◦ FFAs
 ◦ RLAs
 ◦ Linacs
• Collective effects
Acceleration Principles

- Control cost, maintain beam
- Limit decays: difficult & expensive to make muons
- RF is expensive (hardware, power consumption)
 - Make more passes through cavities
 - Use higher RF frequencies if possible
- Everything happens fast
 - Lower energies: no time to change magnet fields, RF frequencies, replace RF energy
 - These become possible at high energy, but parameters beyond conventional
- Avoid increasing transverse and longitudinal emittance
- Both signs in same accelerator
Decays: Acceleration Gradient

- Muons decay, rest lifetime 2.2 μs
- Large average acceleration gradient (energy gain divided by beam line length) to avoid decays
- Determine average accelerating gradient from desired transmission for a given energy ratio

\[
\frac{m_\mu c^2}{e \log[(E_f + cp_f)/(E_i + cp_i)]} \frac{c \tau_\mu}{\log(N_f/N_i)}
\]

- Formula involves transmission fraction and energy ratio. Doesn’t get relaxed at higher energies.
- To get MAP luminosities, we needed 3.5 MV/m
RF Efficiency

- RF and machine length drive costs
- Muons are bendable leptons: multiple (few to 20) RF passes

\[n \sim \frac{\Delta E}{eG_{\text{avg}}L} \sim \frac{1}{2\pi} \frac{B_{\text{avg}}c}{G_{\text{avg}}} \frac{\Delta E}{\gamma c} \]

- Small circumference of acceleration stages
- High fields in dipoles
- Large dipole packing fraction

- Top off cavities (at high energy, more time)
- RF frequency
 - Higher frequency less expensive
 - More turns with lower frequency
Longitudinal Emittance

• Preserving longitudinal emittance drives the design of many acceleration stages
 ▪ Many stages to pass through: successful transmission through a stage is insufficient
 ▪ Transfer lines perform longitudinal matching (RF!)?
 ▪ Think hard about tolerance for longitudinal emittance growth
• More difficult/expensive with larger emittances
 ▪ Think about this in late-stage cooling optimization
• To reduce longitudinal emittance growth
 ▪ Increase circumference (reduce momentum compaction). Less efficient or more decays.
 ▪ Reduce RF frequency (expensive)
Pulsed Synchrotron

- Accelerate as usual for a synchrotron: magnet fields proportional to momentum
- Maximum field (iron dipoles) only around 1.5 T
 - Few turns or large number of decays
 - More turns than other some options (Linac, RLA, FFA)
- Magnet fields increasing rapidly
 - Only suitable for higher energies (1 ms time scale)
- Alternative: hybrid pulsed synchrotron
 - Interleave fixed superconducting dipoles and bipolar warm dipoles
 - Higher average bend field: shorter circumference, more RF passes
 - But less energy gain (typical factor ≈ 2)
Pulsed Synchrotron Issues

- Need multiple RF stations
 - Energy increases discretely, magnets vary continuously
 - Large synchrotron tune (∼ 1)
 - Bigger problem for non-hybrid synchrotron
- Hybrid vs. normal pulsed synchrotron
 - Normal has larger factor in energy gain
 - Hybrid advantages
 - More passes for given decay
 - Fewer RF stations
 - Smaller circumference
 - Higher maximum energy on site
- Easier at higher energies (more time)
Magnets

- Warm iron magnets fairly straightforward
 - Power loss can be limited to the few MW level
 - 1.5 T maximum field for an efficient design
 - Can push somewhat higher but at a cost (stored energy and loss)
- Pulsed HTS
 - Would need meaningfully higher fields (2.5 T?), and similar ramp times (few ms for higher energies)
 - Right now pretty far from achieving this
Pulsed Power

- Use resonant converters (capacitor banks, inductors)
- Need to have good linearity with time
- ~ 100 MJ stored energy in magnets
- Delivered in ~ 1 ms
- $\sim 10^9$ lifetime pulses
 - 10 times existing systems
 - Reduce capacitor voltage for better lifetime, need more capacitors
- Hardware costs ~ 2 G$\$.
- More detail, talk by Brauchli et al.,
 https://indico.cern.ch/event/1077393/
Sample Scenario

- Large longitudinal emittance: 25 meV s
- Small transverse normalized emittance: 25 µm
- High bunch charge: 2×10^{12} per sign
- Low repetition rate: 15 Hz
- Average gradient: 3.5 MV/m
 - 1.3 GHz cavities at 35 MV/m
- Pulsed dipole maximum field: 1.5 T
- Fixed dipole field: 10 T
Sample Scenario

- Accelerate from 63 to 1500 GeV
- Three stages, first two share a tunnel
- Very hand-waving calculation
- Dwell times in particular will be somewhat longer

<table>
<thead>
<tr>
<th>Injection Energy (GeV)</th>
<th>63</th>
<th>303</th>
<th>750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraction Energy (GeV)</td>
<td>303</td>
<td>750</td>
<td>1500</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>5210</td>
<td>5210</td>
<td>9361</td>
</tr>
<tr>
<td>Fixed Dipole Length (m)</td>
<td>—</td>
<td>1103</td>
<td>2358</td>
</tr>
<tr>
<td>Ramped Dipole Length (m)</td>
<td>4229</td>
<td>3126</td>
<td>5240</td>
</tr>
<tr>
<td>Turns</td>
<td>13</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>0.23</td>
<td>0.43</td>
<td>0.72</td>
</tr>
<tr>
<td>Cavity Power (kW)</td>
<td>950</td>
<td>950</td>
<td>530</td>
</tr>
</tbody>
</table>
• Fixed field alternating gradient accelerator
• Single beamline for many energies, magnet fields don’t vary with time
• No switchyard: can get a large number of turns
• Magnets need to be wide: every energy at a different position
FFA

- Linear non-scaling FFA
- Tunes vary with energy
- Time of flight parabolic with energy
- Serpentine acceleration: pass three times over RF crest
- Increase width of channel to reduce longitudinal emittance growth. Do this with
 - More voltage (fewer turns)
 - More cells (longer ring)
 - Tolerated decay and emittance growth determine circumference/turns
• Distribute RF cavities evenly around the ring
 ◦ Drifts containing cavities need to be short
 ◦ Avoid transverse emittance growth from orbit mismatch
• Fast kickers for injection/extraction
• Usually prefer stages with factor of 2–3 energy gain
 ◦ Aperture increases rapidly with energy gain factor
 ◦ Longitudinal acceptance decreases rapidly with energy gain factor
• Add nonlinearity
 ◦ Reduce time of flight range: open serpentine channel
 ◦ Reduce chromaticity: more energy range
 ◦ Watch dynamic aperture
FFA

- FFA probably uses lower RF frequencies
- Short cell length important
 - Cavities as close as possible to magnets
 - Operate with up to 0.1 T on cavities?
- Sample parameters:

<table>
<thead>
<tr>
<th></th>
<th>Injection Energy (GeV)</th>
<th>Extraction Energy (GeV)</th>
<th>RF Frequency (MHz)</th>
<th>Cells/cavity</th>
<th>Gradient (MV/m)</th>
<th>Turns</th>
<th>Cavities/drift</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63</td>
<td>173</td>
<td>975</td>
<td>3</td>
<td>30</td>
<td>6.5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>173</td>
<td>375</td>
<td>975</td>
<td>3</td>
<td>30</td>
<td>8.5</td>
<td>2</td>
</tr>
</tbody>
</table>

January 25, 2022

J. S. Berg — Muon Acceleration Acceleration — Workshop on Muon Driven Colliders
Vertical FFAs

- In a vertical FFA, orbits change vertically with energy, not horizontally
- Path length nearly independent of energy
 - Path length variation with energy limits turns (longitudinal emittance growth) in traditional FFA
- Difficulties
 - Relatively larger vertical orbit excursions. Require large cavity apertures.
 - Magnets are challenging
• Return beam to a linac with a separate pass for each energy
• Most conventional multi-pass design
• Preferred solution at lower (few GeV) energies
• Large factor of energy gain
• Primary limitation is the switchyard where each energy enters/exits a different arc
 • Large emittances
 • Need focusing magnets close to separation
 • Energy overlap between passes
 • Space at switchyard end gets very crowded
 • Limits turns
• Geometry to improve switchyard crowding
 • Conventional racetrack: two linacs connected by 180° arcs
 • “Dogbone”: loops at each end of a single linac. Separation twice as good for a given number of linac passes.
 • Arcs cross at intermediate points

• Preserving large longitudinal emittance
 • Requires relatively long arcs
 • Large beta function difference between linac and arc, even with focusing in the linac, requires matching
 • Focusing in linac to keep beta function reasonable
 • Focusing strength at injection, including energy spread
 • Injecting into linac center can help
Linac

- Only single-pass, so expensive, inefficient
- MAP muon collider scenarios generally used linacs below about 1 GeV
 - $v < c$ for lower energies creates RF synchronization issues in multi-pass machines
 - Large emittances (transverse and longitudinal) more easily handled
- For smaller emittances at lower energies, a single pass high frequency (1.3 GHz) linac can be more cost effective than a multi-pass system that may require lower frequencies
- Early acceleration: cooling lattice without absorbers
Collective Effects

- **Beam collisions**
 - Both beams counter-rotating in same rings
 - Beams collide at two points
 - Small number of collisions

- **Heavy beam loading in cavities**
 - High frequency RF good for power efficiency, cost
 - 1.3 GHz cavity, 2×10^{12} muons extract 15% of the stored energy
 - Significant short-range wake
 - Opposite signs passing through same cavities, relative timing depends on which cavity
 - Small number of passes compared with storage ring

- Is chromaticity correction needed?
Summary

- Hybrid pulsed synchrotrons most efficient, in terms of RF, circumference
 - High average bend field
 - Larger number of turns
- Pulsed power costs look large: may need to revisit cost tradeoffs
- FFAs may be a good alternative, particularly more advanced designs
- More decays allowed, better efficiency
- Longitudinal bunch manipulation between stages could be expensive: consider in stage design
- Collective effects may be significant