Workshop on Muon Driven Colliders SnowMass Muon Collider Forum

January 27, 2022

Machine Detector Interface status and plans

most recent reports from past/on-going studies at: <u>https://indico.cern.ch/category/14577/</u> Community Meetings @ EU R&D Roadmap <u>https://indico.cern.ch/category/14574/</u> MDI Working Group meetings <u>https://indico.fnal.gov/category/1267/</u> SnowMass Muon Collider Forum

Machine Detector Interface (MDI) Working Group

Donatella Lucchesi (University of Padova/INFN), Christian Carli (CERN), Anton Lechner (CERN), Nicolai Mokhov (FNAL), Nadia Pastrone (INFN), Sergo R Jindariani (FNAL)

$MDI @ \sqrt{s} = 125 \ GeV$

Not discussed here

Accelerator R&D Roadmap Bright Muon Beams and Muon Colliders

Panel members: **D. Schulte**,(Chair), **M. Palmer** (Co-Chair), T. Arndt, A. Chancé, J. P. Delahaye, A.Faus-Golfe, S.Gilardoni, P.Lebrun, K.Long, E.Métral, N.Pastrone, L.Quettier, T.Raubenheimer, C.Rogers, M.Seidel, D.Stratakis, A.Yamamoto Associated members: A. Grudiev, R. Losito, D. Lucchesi

International Design Study Collaboration GOAL

In time for the next European Strategy for Particle Physics Update, aim to establish whether the investment into a full CDR and a demonstrator is scientifically justified

The Panel endorsed this ambition and concludes that:

- the MC presents enormous potential for fundamental physics research at the energy frontier
- → it is the future direction toward high-energy, high-luminosity lepton collider
- → it can be an option as next project after HL-LHC (i.e. operation mid2040s)
- at this stage the panel did not identify any showstopper in the concept and sees strong support of the feasibility from previous studies
 ESPP Accelerator R&D Roadment
- it identified important R&D challenges

ESPP Accelerator R&D Roadmap arXiv:2201.07895 [physics.acc-ph]

The panel has identified a development path that can address the major challenges and deliver a 3 TeV muon collider by 2045

Baseline facility

Focus on two energy ranges:

Proton driver production

- technology ready for construction in 10-20 years 3 TeV
- **10+ TeV** with more advanced technology

Baseline @ International Design Study

ASSUMPTION/IP

 $\mathcal{L} = (E_{CM}/10 \text{TeV})^2 \times 10 \text{ ab}^{-1}$

Table 5.1: Tentative parameters for a muon collider at different energies, based on the MAP design with modifications. These values are only to give a first, rough indication. The study will develop coherent parameter sets of its own. For comparison, the CLIC parameters at 3 TeV are also given. Due to beamstrahlung only 1/3 of the CLIC luminosity is delivered above 99% of the nominal centre-of-mass energy ($\mathcal{L}_{1.1\infty}$). The CLIC emittances are at the end of the linac and the beam size is given for both the horizontal and vertical planes. **ESPP Accelerator R&D Roadmap**

arXiv:2201.07895 [physics.acc-ph]

Parameter	Symbol	Unit	T	Target value		CLIC
Centre-of-mass energy	E_{cm}	TeV	3	10	14	3
Luminosity	\mathcal{L}	$10^{34} { m cm}^{-2} { m s}^{-1}$	1.8	20	40	5.9
Luminosity above $0.99 \times \sqrt{s}$	$\mathcal{L}_{0.01}$	$10^{34} { m cm}^{-2} { m s}^{-1}$	1.8	20	40	2
Collider circumference	C_{coll}	km	4.5	10	14	
Muons/bunch	N	10^{12}	2.2	1.8	1.8	0.0037
Repetition rate	f_r	$_{\rm Hz}$	5	5	5	50
Beam power	P_{coll}	\mathbf{MW}	5.3	14.4	20	28
Longitudinal emittance	ϵ_L	MeVm	7.5	7.5	7.5	0.2
Transverse emittance	ϵ	$\mu{ m m}$	25	25	25	660/20
Number of bunches	n_b		1	1	1	312
Number of IPs	n_{IP}		2	2	2	1
IP relative energy spread	δ_E	%	0.1	0.1	0.1	0.35
IP bunch length	σ_z	mm	5	1.5	1.07	0.044
IP beta-function	β	mm	5	1.5	1.07	
IP beam size	σ	$\mu { m m}$	3	0.9	0.63	0.04/0.001

Key Challenge Areas

- **Physics potential** evaluation, including **detector concept and technologies**
 - Impact on the environment
 - Neutrino flux mitigation and its impact on the site (first concept exists)
 - Machine Induced Background impact the detector, and might limit physics
- **High-energy systems** after the cooling (acceleration, collision, ...)
 - Fast-ramping magnet systems
 - High-field magnets (in particular for 10+ TeV)
- High-quality muon beam production
 - Special RF and high peak power
 - Superconducting solenoids
 - Cooling string demonstration (cell engineering design, demonstrator design)
- Full accelerator chain
 - e.g. proton complex with H- source, compressor ring → test of target material

High energy complex requires known components

→ synergies with other future colliders

MDI WG Summary

Can base the new studies on the valuable experience gained within MAP (N. Mokhov et al.)

- Study the beam-induced background and identify mitigation strategies
- Develop a (conceptual) interaction region (IR) design that yields background levels compatible with detector operation, i.e. show that
 - the desired physics performance can be reached
 - the cumulative radiation damage in the detector remains acceptable
- Address **different centre-of-mass energies**, with particular attention to:
 - > 3TeV
 - 10TeV (IR design to be scaled up further to 14TeV if needed)
- ✓ By end of 2022, aim to have a first level IR optimization
 3 TeV option: start optimizing the IR design starting from MAP layout
 10 TeV option: obtain a first IR design, first quantification of background
- By 2025, aim to have a mature IR design
 Demonstrate feasibility of reaching detector performance goals for both collider options
- $\checkmark\,$ Meetings with common discussions inviting contact persons from other WPs
- ✓ Interface with Snowmass is important

Recap of background sources

N. Mokhov

1st Muon Collider community meeting

 Certainly a main background source for all collider options

Muon decay around the ring

Major contribution comes from decays in IR Bethe-Heitler muons also from further away

Incoherent e⁻/e⁺ pair production during bunch crossing in IP

e⁻/e⁺ trajectories influenced by solenoid field can impact on nozzle and detector vacuum chamber

Beam-halo losses at aperture bottlenecks

- Was found not to be an issue at energy of $\sqrt{s}=2$ TeV* (with a solenoid field of a few T)
- Nevertheless to be studied for the \sqrt{s} =10+ TeV collider option

- Halo losses near detector can yield non-negligible background contribution
- Acceptable halo loss levels to be defined (halo cleaning)

Links with other accelerator WPs

List of topics is not complete (and not all have same priority)

Strong ties needed with: High-energy complex Magnets Beam dynamics Radiation protection

MDI WP depends on resource allocation in other WPs to address the different topics

- Iterate on lattice design, converge on L*
- Explore background mitigation techniques (e.g. combined-function magnets, chicanes, sweeping magnets)
 - Estimate achievable magnet apertures
 - Integrate shielding/masks (synergies with heat load/radiation damage studies for magnets)
 - Quantify affordable minimum beam clearance
 - Model beam halo
 - Define requirements for halo cleaning system for background reduction (in addition to injection scraping)
- Quantify impact of neutrino hazard mitigation techniques (e.g. movers) on detector background

Links with detector community

1	Task description
By 2022	Study beam-induced background characteristics using the MAP \sqrt{s} =3 TeV interaction region design
By 2022	Define a metric for the determination of the shape and dimensions of the shielding inserted in the detector (nozzle)
By 2025	Explore further shielding strategies (e.g. asymmetric nozzle, optimization of interaction region active elements together with detector modifications)
Concurrently	Provide estimates of the long-term radiation damage in the detector
tasks	Adapt experiment design and propose new detector technologies
	1 Task description

TOTAL 15 FTEy/5 years

1	Task description
By 2022	Develop a first conceptual interaction region design , which integrates a detector shielding together with the detector envelope and the final focus system.
By 2022	Provide a first estimate of particle fluxes for different source terms (e.g. muon decay, incoherent electron-positron pair production, halo).
By 2025	Optimize the shielding design with respect to different particle and source term contributions; explore alternative possible background mitigation techniques and assess the need of a halo-collimation system for background reduction.
Concurrently with other	Derive estimates of the long-term radiation damage in the detector.
tasks	Adapt experiment design and propose new detector technologies.

Lattice challenges

- Low β^* (few mm):
 - Strong IR quadrupoles and large $\hat{m{eta}}$:
 - * large chromaticity;
 - * large sensitivity to misalignments and field errors.
- Small circumference, particularly important for short living particles!
- High density: $N \approx 2 \times 10^{12}$ per bunch.
- Neutrinos hotspots limit the length of field-free regions at beam energy $\gtrsim\!\!1.5~\text{TeV}$
- Protection of magnets and detectors.
- $\sigma_{\ell} \leq \beta^*$ to avoid hour-glass effect.
- Expected large momentum spread (pprox 0.1%) requires
 - small $|\alpha_p|$ ($\approx 1 \times 10^{-5}$) over the momentum range to achieve short bunches with reasonable RF voltage;
 - sufficient Dynamic Aperture ($\gtrsim 3\sigma$) in presence of strong sextupoles and large dp/p.

Eliana Gianfelice-Wendt (FNAL)

E. Gianfelice-Wendt

Interaction Region @ $\sqrt{s} = 1.5$ and 3 TeV

Name	Q_1	Q_2	Q3, Q4	Q_5	B ₁
Rc_{int} (cm)	4	5.5	8	8	8
$Rc_{\rm out}$ (cm)	8	9.5	12	12	12
Ri _{out} (cm)	20	25	30	30	30
Length (m)	1.5	1.76	1.7	1	6

Muon Collider Lattice Concepts Y. Alexahin *et al* 2018 *JINST* **13** P11002

 $\sqrt{s} = 1.5 \ TeV$

The machine elements, MDI and interaction region must be properly designed and optimized @ each collider energy

Final Focus quadrupoles

$$\sqrt{s} = 3 \text{ TeV}$$

in cyan: defocusing quadrupoles with up to 2 T dipole component

Preliminary IR design @ $\sqrt{s} = 6$ TeV

14

assumed available Nb_3 Sn magnet technology

M1 04

Q5

B1

O3

Muon Collider Lattice Concepts

Y. Alexahin *et al* 2018 *JINST* **13** P11002

Final Focus quadrupoles

Parameter	Q1	Q2	Q3	Q4	Q5	
ID (mm)	160	200	240	240	240	
<i>G</i> (T/m)	200	-125	-100	103	-78	
$B_{\rm dipole}({\rm T})$	0	3.5	4.0	3.0	6.0	
<i>L</i> (m)	5.3	3.0	5.1	5.1	5.1	

in cyan: defocusing quadrupoles with up to 5 T dipole component

Design goals:

• $\beta^* = 3 \text{ mm}$

r(cm)

- 10 m distance from IP to the first quad
- \geq 3 T dipole component in quads (not Q1) to sweep away charged secondaries

s(m)

50

- magnet inner bore radius constrained by IR > $5\sigma_{\perp}^{(max)}$ + 3 cm \rightarrow good field quality
- magnets cut in pieces shorter than 6 m to insert protecting masks

Q3

Q2

Q1

Preliminary IR design @ $\sqrt{s} = 10 \text{ TeV}$

Kyriacos Skoufaris - Christian Carli (CERN)

Design requirements:

MInternational UON Collider

- \checkmark the ring length should be as small as possible
 - to reach design luminosity with given β^* and intensity
 - use of the maximum allowed magnetic field for all the lattice magnets, 20T for the final focusing quads and 16T for the rest of the magnets
- \checkmark to mitigate Neutrino radiation issue (avoid local high doses)
 - extensive use of dipoles and combined function magnets (dipole+multipole), with only exception the final focusing quads and the magnets in the straight section
 - the free space between magnets is 0.3m
- \checkmark good control of the lattice optics, errors, fringe field and the particle dynamics needed
 - the chromatic phenomena such as linear/non-linear chromaticity, Montague functions, second order dispersion and higher order momentum compaction should be compensate/controlled

Parameters	Symbol	Unit	10TeV com mc
Particle energy	E	GeV	5000
Particle momentum	P_0	$GeV c^{-1}$	5000
Luminosity	L	$10^{34} { m cm^{-2} s^{-1}}$	20
Bunch population	N_P	10^{12} ppb	1.8
Transverse normalized rms emittance	$\varepsilon_{nx} = \varepsilon_{ny}$	$\mu \mathrm{m}$	25
Longitudinal emittance $(4\pi \sigma_E \sigma_T)$	ϵ_i	eVs	0.314
Rms bunch length	σ_z	mm	1.48
Relative rms energy spread	δ	%	0.1
Beta function at IP	$\beta_x^\star = \beta_y^\star$	mm	1.5
Beam power with 10 Hz repetition rate	P_{beam}	MW	14.4

FF scheme with CCS @ $\sqrt{s} = 10 \text{ TeV}$

- The interaction region (IR) consists of the final focusing (FF) quadrupole triplet and the chromatic correction scheme (CCS)
- Strong chromatic effects from FF quads with strength depending on particle energy is compensated in CCS by dipole-sextupoles and dipole-quadrupole combined function magnets
- The magnetic field at the FF quads is close to 20T and for the rest elements in the CCS is close to the 16T (maximum allowed one)

16

This is a first version without dipolar magnetic fields to understand BIB

Options if only 16T magnets available

Interaction region – FF scheme

Beam Induced Background @ 1.5 TeV

N.V. Mokhov - S.I. Striganov (FNAL)

Detector Backgrounds at Muon Colliders

Physics Procedia 37 (2012),2015

0.75 TeV muon → decay length 4.7 × 10⁶ m
2 × 10¹² muons/bunch → 4.28 × 10⁵ decays per meter of the lattice in a single pass
1000-turn stores with 15 stores per second
→ 1.28 × 10¹⁰ decays/meter/sec for two 0.75-TeV muon beams

Machine Detector Interface @1.5

@ 0.75 TeV with 2×10¹²muons/bunch → 4×10⁵ muon decays/m single bx

Machine Detector Interface @1.5 – 3 TeV

Beam Induced Background distributions

Advanced assessment of beam-induced background at a muon collider <u>F. Collamati *et al* 2021 *JINST* **16** P11009</u>

75

100

MARS15 – FLUKA Comparisons

Advanced assessment of beam-induced background at a muon collider <u>F. Collamati *et al* 2021 *JINST* **16** P11009</u>

Comparisons of BIB at different energies

three colliders operating at: 125 GeV 1.5 TeV 3 TeV a single μ^- beam arriving from the right BIB samples not uniform: some generated with MARS15, some with FLUKA results at 3 TeV are very preliminary: there is still no optimized MID and ideal beam

beam energy [GeV]	63	750	1500
average inst. lum. [cm ² s ⁻¹]	0.008 x 10 ³⁴	1.25 x 10 ³⁴	4.6 x 10 ³⁴
number of muons/bunch	4 x 10 ¹²	2 x 10 ¹²	2 x 10 ¹²
number of bunches	1	1	1
repetition rate [Hz]	15	15	12
β* [cm]	1.7	1	0.5
normalized $\boldsymbol{\epsilon}_{\! T} \left[\boldsymbol{\pi} \; \text{mm rad} \right]$	0.2	0.025	0.025
normalized $\boldsymbol{\epsilon}_{\!\scriptscriptstyle L}\left[\pi \text{ mm rad}\right]$	1.5	70	70
bunch length [cm]	6.3	1	0.5
bunch size at IP [µm]	75	6	3
momentum spread [%]	0.004	0.1	0.1

Both MARS15 and FLUKA simulate the interaction of the muon decay products with the machine elements and transport the BIB particles up to the detector envelop

Time of arrival

BIB yields

	MARS15	MARS15	FLUKA	FLUKA	_
beam energy [GeV]	62.5	750	750	1500 ME	
µ decay length [m]	3.9 x 10⁵	46.7 x 10⁵	46.7 x 10⁵	93.5 x 10⁵	
μ decays/m per beam (for 2x10 ¹² μ /bunch)	51.3 x 10⁵	4.3 x 10 ⁵	4.3 x 10 ⁵	2.1 x 10⁵	
simulation z range [m]	[-10, 30]	[-1, 25]	[0, 100]	[0, 100]	
photons/BX (E _y > 0.1 MeV)	170 x 10 ⁶	86 x 10 ⁶	51 x 10 ⁶	70 x 10 ⁶	
neutrons/BX (E _n > 1 meV)	65 x 10 ⁶	76 x 10 ⁶	110 x 10 ⁶	91 x 10 ⁶	
<mark>e</mark> ⁺/BX (E _e > 0.1 MeV)	1.3 x 10 ⁶	0.75 x 10 ⁶	0.86 x 10 ⁶	1.1 x 10 ⁶	
charged hadrons/BX (E _h > 0.1 MeV)	0.011 x 10 ⁶	0.032 x 10 ⁶	0.017 x 10 ⁶	0.020 x 10 ⁶	
muons/BX (E _h > 0.1 MeV)	0.0012 x 10 ⁶	0.0015 x 10 ⁶	0.0031 x 10 ⁶	0.0033 x 10 ⁶	

 $MDI @ \sqrt{s} = 10 TeV - first study$

TR TPD

The quantities are normalized to the single passage, **Daniele Calzolari et al.(CERN)** assuming a bunch containing $2 \cdot 10^{12}$ muons.

AIRL

Electron, positrons and photons cutoffs are at 100 keV. SR photons are produced down to 100 keV. Neutrons are simulated down to thermal energies (~meV) (less than 10% will have energies below 10^{-5} GeV). Photonuclear reactions are activated at all energy ranges. Muon pair production by photons and bremsstrahlung by muons are activated.

> BIB mainly due to **decays** which happens **around** the **beam core**. Decays further away in the transverse plane give less contribution.

The tunnel simulated length is ± 35 m.

Only pure quadrupole magnets are present in the lattice.

The **detector area** is modeled as a **blackbox**, and the particle crossing its surface are scored. It is considered as the region outside of the nozzle (and the beryllium chamber) inside two planes at $\pm 6m$.

In the nozzle, there is a solenoidal magnetic field of 5 T.

BIB decay origin @ 10 TeV

- The longitudinal decay position is a very important indicator to understand the contribution of decays at large distances.
 - Most of the particles come from the region where there is the largest variation of the beam size.
 - Secondary muons and charged hadrons are not yet included. (The number of counts is still not enough for a satisfactory statistics)
 - The main contributions are always due to decays happening near to the ideal trajectory.

BIB distributions @ 10 TeV

Total counts per crossing position

- Both the photons and the neutrons show the same behavior. Far away from the IP, only the muons decaying around the beam core give a significant contribution.
- Near to the beginning of the nozzle, the tails become more important since the corresponding secondary electrons have to travel for less distance in the materials.

Detector studies @ $\sqrt{s} = 1.5$ TeV

TO BE IMPROVED

Vertex Detector (VXD)

TUNED at higher \sqrt{s}

- CLIC Detector technologies adopted with important tracker modifications to cope with BIB
- Detector design optimization at \sqrt{s} =1.5 (3) TeV

Quite advanced conceptual design for Higgs factory, 1.5 TeV and 3 TeV

Properties of BIB contribution

BIB has several characteristic features \rightarrow crucial for its effective suppression

- 2. Significant spread in time (few ns + long tails up to a few μ s) $\mu^+\mu^-$ collision time spread: 30ps (defined by the muon-beam properties) \downarrow , strong handle on the BIB \rightarrow requires state-of-the-art timing detectors
- Large spread of the origin along the beam
 different azimuthal angle wrt the detector surface
 + affecting the time of flight to the detector
 - , relevant for position-sensitive detectors

An overview of the main optimisation steps and their impact presented in a <u>recent paper</u>

Tracker detector requirements

- Timing window applied to reduce out-of-time BIB's hits
- Granularity optimized to ensure $\lesssim 1\%$ occupancy
- BIB suppression based on cluster shape
- If primary vertex could be known before → effective angular matching of hit doublets
- To be tuned in presence of secondary vertices or long-lived particles

Reconstruction of tracks suffers from large combinatorial background , need suppression of BIB hits + efficient tracking strategies/algorithms

Calorimeters

Calorimeters

BIB deposits large amount of energy in both ECAL and HCAL

timing and longitudinal measurements play a key role in the BIB suppression

Step 3: final jet clustering

using calorimeter clusters and tracks with PandoraPFA and kt (R=0.5)

Remaining BIB is removed by subtraction

Experiment design steps forward

• Beam Induced Background requires an optimized interaction region design to mitigate the unique harsh environment limiting detector acceptance

• Luminosity measure proposed via $\mu\mu \rightarrow \mu\mu$ scattering $(m_{\mu\mu} \sim \sqrt{s})$

- A baseline detector for full simulation studies @ 3 TeV is available to be optimized
- New design and studies still missing @ 10+ TeV

→ ECFA Roadmap Detector R&D

- Tracker design and Tracking: biggest challenge is pattern recognition
- Calorimeter: huge diffuse background
- Muons: no major problems seen

A few comments and next steps

• Is a Muon Collider a more affordable alternative to hadron and lepton colliders both at the energy frontier?

First MDI Kick-off meeting @ November 2021

→ first lattice and MDI studies @ 10 TeV by CERN Next tomorrow <u>https://indico.cern.ch/event/1121610/</u>

NEXT STEPS:

- Optimize the nozzle geometry with systematic design process @ 3 and 10 TeV
- Produce Fluence and TID maps to address proper detector R&Ds

Many thanks to all the community who contributed!!!

extras

multi-TeV Muon Collider

European Strategy Update – June 19, 2020:

High-priority future initiatives [..]

In addition to the high field magnets the accelerator R&D roadmap could contain:

[..] an **international design study** for a **muon collider**, as it represents a **unique opportunity** to achieve a *multi-TeV energy domain beyond the reach of* $e^+e^-colliders$, and potentially within a *more compact circular tunnel* than for a hadron collider. The biggest challenge remains to produce an intense beam of cooled muons, but *novel ideas are being explored*.

International Design Study Collaboration

established in July 2020 Project Leader: Daniel Schulte

nature physics

Muon colliders to expand frontiers of particle physics

K.Long, D.Lucchesi, M.Palmer, N.Pastrone, D.Schulte, V. Shiltsev

Label	Begin	End	Description	Description Aspirational		Minimal	
				[FTEy]	[kCHF]	[FTEy]	[kCHF]
MC.SITE	2021	2025	Site and layout	15.5	300	13.5	300
MC.NF	2022	2026	Neutrino flux miti-	22.5	250	0	0
			gation system				
MC.MDI	2021	2025	Machine-detector	15	0	15	0
			interface				
MC.ACC.CR	2022	2025	Collider ring	10	0	10	0
MC.ACC.HE	2022	2025	High-energy com-	11	0	7.5	0
	2021	2025	Muon cooling sys-	47	0	22	0
MC.ACC.MC	2021	2025	tems		Ū	22	Ū
MC.ACC.P	2022	2026	Proton complex	26	0	3.5	0
MC.ACC.COLL	2022	2025	Collective effects	18.2	0	18.2	0
	2022	2025	across complex	11.7	0	0	0
MC.ACC.ALI	2022	2025	natives	11./	0	0	0
MC.HFM.HE	2022	2025	High-field magnets	6.5	0	6.5	0
MC.HFM.SOL	2022	2026	High-field solenoids	76	2700	29	0
MC.FR	2021	2026	Fast-ramping mag- net system	27.5	1020	22.5	520
MC.RF.HE	2021	2026	High Energy com- plex RF	10.6	0	7.6	0
MC.RF.MC	2022	2026	Muon cooling RF	13.6	0	7	0
MC.RF.TS	2024	2026	RF test stand + test cavities	10	3300	0	0
MC.MOD	2022	2026	Muon cooling test module	17.7	400	4.9	100
MC.DEM	2022	2026	Cooling demon- strator design	34.1	1250	3.8	250
MC.TAR	2022	2026	Target system	60	1405	9	25
MC.INT	2022	2026	Coordination and integration	13	1250	13	1250
			Sum	445.9	11875	193	2445

Community Meeting WG

Radio-Frequency (RF): Alexej Grudiev (CERN), Jean-Pierre Delahaye (CERN retiree), Derun Li (LBNL), Akira Yamamoto (KEK) Magnets: Lionel Quettier (CEA), Toru Ogitsu (KEK), Soren Prestemon (LBNL), Sasha Zlobin (FNAL), Emanuela Barzi (FNAL) High-Energy Complex (HEC): Antoine Chance (CEA), J. Scott Berg (BNL), Alex Bogacz (JLAB), Christian Carli (CERN), Angeles Faus-Golfe (IJCLab), Eliana Gianfelice-Wendt (FNAL), Shinji Machida (RAL) Muon Production and Cooling (MPC): Chris Rogers (RAL), Marco Calviani (CERN), Chris Densham (RAL), Diktys Stratakis (FNAL), Akira Sato (Osaka University), Katsuya Yonehara (FNAL) **Proton Complex (PC):** Simone Gilardoni (CERN), Hannes Bartosik (CERN), Frank Gerigk (CERN), Natalia Milas (ESS) **Beam Dynamics (BD):** Elias Metral (CERN), Tor Raubenheimer (SLAC and Stanford University), Rob Ryne (LBNL) Radiation Protection (RP): Claudia Ahdida (CERN) Parameters, Power and Cost (PPC): Daniel Schulte (CERN), Mark Palmer (BNL), Philippe Lebrun (CERN retiree and ESI), Mike Seidel (PSI), Vladimir Shiltsev (FNAL), Jingyu Tang (IHEP) Machine Detector Interface (MDI): Donatella Lucchesi (University of Padova and INFN), Christian Carli (CERN), Anton Lechner (CERN), Nicolai Mokhov (FNAL), Nadia Pastrone (INFN), Sergo R Jindariani (FNAL) **Synergy:** Kenneth Long (Imperial College), Roger Ruber (Uppsala University), Koichiro Shimomura (KEK) **Test Facility (TF):** Roberto Losito (CERN), Alan Bross (FNAL), Tord Ekelof (Uppsala University)

Physics & Detector:WG 1: Physics Potential: Andrea Wulzer (EPFL&CERN) et al.Donatella Lucchesi (Univ. Padova - INFN)WG 2: Detector performance (with several focus areas)WG 3: Detector R&D and Software & Computing development