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General relativityStandard model of particle physics

Neutrino = one of the lightest and 
most weakly-interacting known 
particles

Cosmology = gravitation on 
the largest observable scales

An unlikely partnership?
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Cosmic neutrino 
background 
𝑡 ~ 1s, 𝑇 ~ 1 MeV

Primordial 
nucleo-
synthesis
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Formation of the C𝜈B…

Above 𝑇 ~ 1MeV, even weakly-interacting neutrinos 
can be produced, scatter off 𝑒!𝑒" and other 
neutrinos, and attain thermodynamic equilibrium

Below 𝑇 ~ 1MeV, expansion dilutes plasma, 
and reduces interaction rate: the universe 
becomes transparent to neutrinos.

The C𝜈B is formed when neutrinos decouple from the cosmic plasma.

Neutrinos 
“free-stream”
to infinity.
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The cosmic neutrino background…
Standard model predictions

Relativistic Fermi-Dirac
distribution

Number density:

Energy density:
• Relativistic (if 𝑇!"# ≫ 𝑚$ ):

• Non-rel (if 𝑇!"# ≪ 𝑚$ ):𝑇CνB =
4
11

%/'

𝑇CMB

𝑛CνB ≃ 110 cm!"

𝜌!"# ≃
7
8

4
11

(/'

𝜌!)#

Ω!"# ≃
𝑚$

93 ℎ* eV
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Neutrino dark matter

Temperature:

Per family of 
neutrinos
+antineutrinos



Primordial 
nucleo-
synthesis

Cosmic neutrino 
background 
𝑡 ~ 1s, 𝑇 ~ 1 MeV
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What can cosmology do for neutrino physics?
Precision cosmological observations allow us to infer the properties of the cosmic 
neutrino background, from which to determine :

• Absolute neutrino mass scale, ∑𝑚#

• Number of neutrino families, 𝑁$%%
– Deviations from SM prediction of 𝑁#$$ ≈ 3
– e.g., test for the existence of light sterile states

• Neutrino decay/lifetime, 𝜏&
• Non-standard neutrino interactions

– Self, neutrino-dark matter, neutrino-dark energy
– …

“Standard” tests (even a raison d’être)

More exotic, but of growing interest
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What can neutrino physics do for cosmology?
From the theoretical perspective:

• Origin of dark matter = keV sterile neutrinos as a dark matter candidate

• Origin of the matter-antimatter asymmetry = leptogenesis linked to neutrino mass generation

More directly, neutrino experiments can also help to pin down parameters of the C𝜈B.

• Allow us to gain more precise and accurate information about the other stuff in the universe.
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1. What can cosmology do for 
neutrino physics?
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Cosmological observables…

He! He"

𝑡𝑝 𝑑

𝑛

𝑁%&& (expansion rate)
𝑁%&& (expansion rate)
Interactions (free-streaming)
Lifetime (free-streaming)

∑𝑚' (perturbation growth)
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Cosmic microwave background 
anisotropies

Large-scale matter distributionLight element abundances from 
primordial nucleosynthesis

+ Supernova Ia, local H0, etc.
(No direct neutrino effects)



What do these probes really probe?
They may look different, but ultimately the information 
contained is

• Universal expansion rate at different times
– How much matter, radiation, “in-between” (e.g., 

neutrinos), vacuum energy, etc. 

• Growth of fluctuations under gravity
– Kinematic properties and interactions of the various 

types of stuff in the universe; good for neutrino physics

• Distance measurements
– Spatial geometry, dark energy; not directly relevant for 

neutrino physics but has indirect effects on inference
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Neutrinos & the expansion rate… 

The Hubble expansion rate depends on the energy content of the universe:
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𝐻' 𝑎(𝑡) = 𝐻&' Ω(𝑎!" + Ω)𝑎!* + Ω+ + Ω,𝑎!' +⋯
Matter Radiation Cosmological 

constant
Spatial 
curvature

Scale factor

Neutrinos = radiation at early times
= matter at late times
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The Hubble expansion rate depends on the energy content of the universe:
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Scale factor

𝜌-./$0 + 𝜌123 +6𝜌143 = 1 + 𝑁$%%×
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𝑁%&&
() = 3.0440 ± 0.0002

Bennett et al, 2020, 2021;  
Froustey, Pitrou & Volpe, 2020

For 3 SM families, includes 𝑚*/𝑇 corrections, 
non-instantaneous decoupling, finite-
temperature QED, and neutrino oscillations.

Standard cosmology



Neutrinos & the expansion rate… 

The Hubble expansion rate depends on the energy content of the universe:
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*/"
𝜌123

𝑁%&&
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Bennett et al, 2020, 2021;  
Froustey, Pitrou & Volpe, 2020

For 3 SM families, includes 𝑚*/𝑇 corrections, 
non-instantaneous decoupling, finite-
temperature QED, and neutrino oscillations.

Any relativistic, feebly-interacting, 
thermalised particle species will look 
like a neutrino cosmologically, e.g., light 
sterile neutrinos, thermal axions, etc.



𝑁$%% < 5
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Nucleosynthesis & Neff…

How much of these elements is produced  
depends on how fast the universe expands.

Pitrou, Coc, Uzan
& Vangioni 2018Time after big bang [s]

Ab
un
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e

Constraining 𝑁$%%with the primordial 
elemental abundances has a long history.



Constraining 𝑁$%%with the primordial 
elemental abundances has a long history.

𝑁$%% < 5
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𝑁788 = 2.88 ± 0.27 (68% CL)

Nucleosynthesis & Neff…

D/H = Deuterium
Yp = Helium-4

Pitrou, Coc, Uzan
& Vangioni 2018

At face value a strong statement against 
thermalised light sterile neutrinos (𝑁122 = 4).



𝑁$%% also affects the expansion rate at recombination.
• Observable in the CMB temperature power spectrum

Hou, Keisler, Knox, Millea & Reichardt 2013

𝑁788 = 2.99 ± 0.34 (95% CL)
Planck TTTEEE+lowE
+lensing+BAO; 
7-parameters

Aghanim et al. [Planck] 2021
18

CMB anisotropies & Neff…

Remarkably 
consistent with 
Standard Model 
prediction 𝑁122 ≈ 3

“Irreducible” signature is 
in the CMB damping tail

“Naïve” signature



What do these probes really probe?
They may look different, but ultimately the information 
contained is

• Universal expansion rate at different times
– How much matter, radiation, “in-between” (e.g., 

neutrinos), vacuum energy, etc. 

• Growth of fluctuations under gravity
– Kinematic properties and interactions of the various 

types of stuff in the universe; good for neutrino physics

• Distance measurements
– Spatial geometry, dark energy; not directly relevant for 

neutrino physics but has indirect effects on inference
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Neutrino masses, ∑𝑚# (large-scale structure)
Neutrino decay/lifetime, 𝜏& (CMB)
Non-standard neutrino interactions (CMB)



Neutrino masses & large-scale structure...
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Why? Free-streaming suppression…

Free-streaming scale:

Neutrino thermal motion prevents efficient clustering on small length scales.

𝑣?@7ABC =
𝑇DEF
𝑚G

≈ 50 1 + 𝑧
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Gravitational
potential wells
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A neutrino and a cold DM particle encounter 2 gravitational potential wells of 
different physical sizes in an expanding universe:

Free-streaming induces gravitational potential decay on length scales 𝜆 ≪ 𝜆FS.

c

c

c

c
𝜈

𝜈𝜈

𝜈

c c
c

𝜈𝜈 c c𝜈𝜈 𝜈

𝜆 ≫ 𝜆8R 𝜆 ≪ 𝜆8RSome time later…

Potential stays the same depth 

Only CDM 
clusters

Potential decays



The presence of neutrino dark matter induces a step-like feature in the spectrum of 
gravitational potential wells.

Perturbation wavenumber
𝑘

Perturbation spectrum
(depth of “potential wells”)

𝛿 ≡
𝛿𝜌
𝜌

Large scales Small scales

Perturbation wavenumber
𝑘

𝛿 ≡
𝛿𝜌
𝜌

Some 
time 
later

CDM-only universe
A cold+neutrino DM universe
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Replace some CDM 
with neutrino DM

A real matter power spectrum calculated from linear perturbation theory…

.∆X
X
∝ Y3
Y4

∝ ∑𝑚G
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A real matter power spectrum calculated from linear perturbation theory…

.∆X
X
∝ Y3
Y4

∝ ∑𝑚G

CMB “primary” (z~1000)

CMB lensing
potential
(z~3-4)

Galaxy clustering
/BAO

Cosmic
shear

Lyman-α
(z~2-4)

Cluster
abundance



Neutrino mass from cosmology…

Ade et al. [Planck] 2018

Large-scale matter power spectrum 
measurement ca. 2018
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.∑𝑚G < 0.12 eV (95% CL)

Planck TTTEEE+lowE+lensing+BAO; 
7-parameters

Aghanim et al. [Planck] 2021
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Aker et al. [KATRIN] 2019

At face value a factor of 30 tighter than current 
lab bound from KATRIN, ∑𝑚G < 3 eV. 



Future cosmological probes…
1𝜎 sensitivity to ∑𝑚G

0.011 − 0.02 eV

0.015 eV

1𝜎 sensitivity to 𝑁788

0.015 eV 0.02 − 0.04

0.05ESA Euclid

LSST

CMB-S4

Detection of the absolute 
neutrino mass may be possible!
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0.05

2024

2024

2027

Minimum ∑𝑚# = 0.06 eV
From neutrino oscillations
(assuming normal mass ordering)



What do these probes really probe?
They may look different, but ultimately the information 
contained is

• Universal expansion rate at different times
– How much matter, radiation, “in-between” (e.g., 

neutrinos), vacuum energy, etc. 

• Growth of fluctuations under gravity
– Kinematic properties and interactions of the various 

types of stuff in the universe; good for neutrino physics

• Distance measurements
– Spatial geometry, dark energy; not directly relevant for 

neutrino physics but has indirect effects on inference
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Neutrino masses, ∑𝑚# (large-scale structure)
Neutrino decay/lifetime, 𝜏& (CMB)
Non-standard neutrino interactions (CMB)



Neutrino free-streaming & the CMB…
Standard neutrinos free-stream.
• Free-streaming in a spatially inhomogeneous background induces shear stress
• Conversely, interactions transfer momentum and wipe to out shear.

Peak
Trough

Trough Sinusoidal
gravitational
potential

Free-streaming case

Peak

Peak

Interacting case
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Scattering transfers
momentum and 
wipes out shear 

• Neutrino shear stress (or lack thereof) leave distinct imprints on the spacetime metric.  
– Affects the evolution of CMB perturbations; observable in the TT spectrum.



Neutrino free-streaming & the CMB…

That CMB prefers neutrino shear stress to no shear stress is well known. 
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No neutrino 
shear stress

Standard neutrino 
shear stress

Melchiorri & Trotta 2005Hannestad 2005

• The trick is in translating this preference to constraints on the fundamental parameters of a 
non-standard neutrino interaction → What is the isotropisation timescale?
– Isotropisation timescale should not be longer than the CMB timescale (400k years).



Isotropisation from relativistic (inverse) decay…

Chen, Oldengott, Pierobon & Y3W 2022

Consider 𝜈6 → 𝜈7 + 𝜙 and its inverse process.
• Isotropisation timescale = How long it takes for decay and inverse decay to wipe out the 

momentum anisotropy in a fluid element.
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𝑇ZJ[?L[\ZJ7 ~ 𝜃]𝜃G^
HK
𝛾G_ 𝜏L7J?

Isotropisation 
timescale

𝜈5

𝜈6

𝜙

𝜃. ≈ ⁄𝑚'/ 𝐸'/

𝜃'0 ≈
12#

$

2#%
$ 𝜃.

In relativistic decay, the decay products are beamed.
Inverse decay can also only happen when the daughter 
particles satisfy strict momentum/angular requirements.

→Isotropisation is a looooong process:
Boost

Rest-frame lifetime



CMB lower bounds on the neutrino lifetime…

Chen, Oldengott, Pierobon & Y3W 2022

𝜈& → 𝜈' (NO) 𝜈& → 𝜈' (IO)

𝜈! → 𝜈&('(NO)

𝜈&(' → 𝜈!(IO)

𝜈! → 𝜈&)*'(NO)
𝜈&)*' → 𝜈!(IO)

Mass-spectrum consistent constraints on invisible neutrino decay 𝜈6 → 𝜈7 + 𝜙.

• In some scenarios, neutrino telescopes and CMB probe the same parameter space. 

IceCube constraints
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2. What can neutrino physics do for 
cosmology?
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What can neutrino physics do for cosmology?
Parameter estimation from cosmological observations is based on statistical inference.  

• Observations don’t actually measure the dark matter density or the dark energy equation of 
state, and much less anything about inflation.

• Inference always assumes a model:
– The less the model uncertainty, the more precise and accurate the parameter estimates.

• Neutrinos are unique in that they are the only cosmologically significant component that has a 
precise prediction within the Standard Model and whose properties can be independently 
measured in a laboratory.
– Eliminating uncertainty in the neutrino sector will help us pin down other cosmological 

parameter inaccessible in the laboratory.
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Aghanim et al. [Planck] 2021

Neutrino mass

Effective number
of neutrinos

Dark matter 
density

Spectral 
index

Hubble 
parameter

Fluctuation 
amplitude

A direct neutrino mass measurement or 
even a confirmation of the inverted 
mass ordering  (minimum ∑𝑚' =
0.11 eV) by oscillation experiments 
would help to shrink these ellipses.

Establishing the existence (or not) of light 
sterile neutrino states through oscillation 
experiments would shrink the uncertainty 
in 𝑁%&& from the neutrino sector. 

More accurate estimates of parameters 
inaccessible in the lab.



What can neutrino physics do for cosmology?

Ultimate prize = Direct detection of the C𝜈B itself
• Best idea uses the 𝛽-decay end-point spectrum → Goes hand-in-hand with direct neutrino 

mass detection.
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𝑄3 −𝑚' 𝑄3 +𝑚'𝑄3 ≡ 𝑚4 −𝑚45

𝑁 → 𝑁> + 𝑒? + 𝜈̅@
𝜈@!"#𝑁 → 𝑁> + 𝑒?

Monochromatic signal from relic 
neutrino capture

Weinberg 1962
Cocco, Mangano & Messina 2007

2𝑚'

Rate~7.5/year /(100 tritium)

KATRIN source:
~ 0.1 mg tritium



What can neutrino physics do for cosmology?

Ultimate prize = Direct detection of the C𝜈B itself
• Best idea uses the 𝛽-decay end-point spectrum → Goes hand-in-hand with direct neutrino 

mass detection.
• Ptolemy Experiment
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The PTOLEMY prototype at the Princeton 
Plasma Physics Laboratory Betti et al. [PTOLEMY] 2019

Normal mass ordering

Inverted mass orderingEn
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Statistical significance of the detection (100 g yr)



Summary…

• The existence of a cosmic neutrino background is a fundamental prediction of 
SM+FLRW cosmology.
– Precision cosmological observations have allowed us to infer the properties of this 

background, from which to determine neutrino properties.
– e.g., masses, effective number of neutrinos, non-standard interactions, lifetime.

• Conversely, better determination of neutrino properties in laboratory experiments 
will allow us to eliminate some model uncertainty in the cosmological parameter 
inference exercise.
– More precise and accurate constraints on the dark matter density, dark energy properties, 

inflationary physics, and other cosmological physics inaccessible in the laboratory.
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