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An unlikely partnership?

Neutrino = one of the lightest and Cosmology = gravitation on
most weakly-interacting known the largest observable scales
particles

General relativity
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Formation of the CvB...

The CvB is formed when neutrinos

, even weakly-interacting neutrinos

can be produced, scatter off ete™ and other
neutrinos, and attain

from the cosmic plasma.

— CvB

Neutrinos
“free-stream”
to infinity.

, expansion dilutes plasma,
and reduces interaction rate: the universe

becomes



The cosmic neutrino background...

Standard model predictions

Relativistic Fermi-Dirac

distribution
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What can cosmology do for neutrino physics?

Precision cosmological observations allow us to infer the
, from which to determine :

* Absolute neutrino mass scale, ), m,,

* Number of neutrino families, N.¢

— Deviations from SM prediction of Negr = 3
— e.g., test for the existence of light sterile states

* Neutrino decay/lifetime, 7,

* Non-standard neutrino interactions
— Self, neutrino-dark matter, neutrino-dark energy



What can neutrino physics do for cosmology?

From the theoretical perspective:

e Origin of dark matter = keV sterile neutrinos as a dark matter candidate

e Origin of the matter-antimatter asymmetry = leptogenesis linked to neutrino mass generation

More directly, can also help to pin down parameters of the CvB.

* Allow us to gain more precise and accurate information about the other stuff in the universe.



1. What can cosmology do for
neutrino physics?



Cosmological observables...

Light element abundances from Cosmic microwave background
primordial nucleosynthesis anisotropies
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What do these probes really probe?

They may look different, but ultimately the information
contained is

at different times

— How much matter, radiation, “in-between” (e.g.,
neutrinos), vacuum energy, etc.

— Kinematic properties and interactions of the various
types of stuff in the universe; good for neutrino physics

— Spatial geometry, dark energy; not directly relevant for
neutrino physics but has indirect effects on inference

11



What do these probes really probe?

They may look different, but ultimately the information
contained is

at different times

— How much matter, radiation, “in-between” (e.g.,
neutrinos), vacuum energy, etc.
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Neutrinos & the expansion rate...

The Hubble expansion rate depends on the energy content of the universe:

H?(a(t)) = HE(Qpa3 + Qa ™+ Qp + Qpa™2 + )

Neutrinos = radiation at early times
= matter at late times

13



Neutrinos & the expansion rate...

The Hubble expansion rate depends on the energy content of the universe:

H?(a(t)) = HE(Qpa3 + Qa ™+ Qp + Qpa™2 + )

Standard cosmology

7 4 \4/3
PcMmB T ZPCVB = ll + Xg(ﬁ) ] PcMB

N3¥ = 3.0440 + 0.0002

Bennett et al, 2020, 2021;
Froustey, Pitrou & Volpe, 2020
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Neutrinos & the expansion rate...

The Hubble expansion rate depends on the energy content of the universe:

H?(a(t)) = HE(Qpa3 + Qa ™+ Qp + Qpa™2 + )

Any relativistic, feebly-interacting, -
thermalised particle species will look Nefr = 3.0440 £0.0002
like a neutrino cosmologically, e.g., light Bennett et al, 2020, 2021,

g Y, €.8., 118 Froustey, Pitrou & Volpe, 2020
sterile neutrinos, thermal axions, etc.
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Nucleosynthesis & N ...

Constraining N gwith the
has a long history.

Volume 66B, number 2 PHYSICS LETTERS 17 January 1977

COSMOLOGICAL LIMITS TO THE NUMBER OF MASSIVE LEPTONS

Gary STEIGMAN
National Radio Astronomy Ob.vervatory1 and Yale Universityz, UsA

David N. SCHRAMM
University of Chicago, Enrico Fermi Institute (LASR), 933 E 56th, Chicago, 1ll. 60637, USA

James E. GUNN
University of Chicago and California Institute of Technofogvi, UsA

Received 29 November 1976

If massive leptons exist, their associated neutrinos would have been copiously produced in the early stages of the
hot, big bang cosmology. These neutrinos would have contributed to the total energy density and would have had the
effect of speeding up the expansion of the universe. The effect of the speed-up on primordial nucleosynthesis is to
produce a higher abundance of 4He. It 1s shown that observational limits to the primordial abundance of 4He lead to
the constraint that the total number of types of heavy lepton must be less than or equal to 5.
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How much of these elements is produced
depends on how fast the universe expands.
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Nucleosynthesis & N ...
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If massive leptons exist, their associated neutrinos would have been copiously produced in the early stages of the
hot, big bang cosmology. These neutrinos would have contributed to the total energy density and would have had the
effect of speeding up the expansion of the universe. The effect of the speed-up on primordial nucleosynthesis is to
produce a higher abundance of 4He. It 1s shown that observational limits to the primordial abundance of 4He lead to N [— 2 8 8 _l_ 0 2 7 6 8 O/ C L
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At face value a strong statement against
thermalised light sterile neutrinos (Nggr = 4).

Negr < 5
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CMB anisotropies & N ...

Hou, Keisler, Knox, Millea & Reichardt 2013

Nesr also affects the expansion rate at recombination. ]
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What do these probes really probe?

They may look different, but ultimately the information
contained is

— Kinematic properties and interactions of the various
types of stuff in the universe; good for neutrino physics

Neutrino masses, ), m,, (large-scale structure)

Neutrino decay/lifetime, 7, (CMB)
Non-standard neutrino interactions (CMB)
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Neutrino masses & large-scale structure...

Cold dark matter only Cold dark matter + {Qcpm ;nll()%
Qcpm ~ 25% neutrinos (X m, = 6.9eV) Q, =525~ 15%

256 h~*Mpc

Simulations by Troels Haugbglle
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Neutrino masses & large-scale structure...

Cold dark matter only Cold dark matter + Qcpm Zznle%
Qcpm =~ 25% neutrinos (3 m, = 6.9¢eV) Q, = 53 h‘; ~ 15%

256 h~*Mpc

Simulations by Troels Haugbglle
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Why? Free-streaming suppression...

Neutrino thermal motion prevents efficient clustering on small length scales.

T, eV
(2 “B ~ 50 (1+2) (m_) km s™1
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A neutrino and a cold DM particle encounter 2 gravitational potential wells of
different physical sizes in an expanding universe:
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A real calculated from linear perturbation theory...

Wavelength, A [h~! Mpc]
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A real calculated from linear perturbation theory...
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Neutrino mass from cosmology...

Py (k) [(h ™" Mpe)?]

Large-scale matter power spectrum

measurement ca. 2018
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7-parameters

ym, <0.12 eV (95% CL)

Aghanim et al. [Planck] 2021

At face value a factor of 30 tighter than current
lab bound from KATRIN, Y. m,, < 3 eV.

Aker et al. [KATRIN] 2019
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Future cosmological probes...

ESA Euclid 2024 0.011 —0.02eV 0.05
LSST 2024 0.015eV 0.05
CMB-54 2027 0.015eV 0.02 — 0.04

Minimum Y, m, = 0.06 eV Detection of the absolute

neutrino mass may be possible!
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What do these probes really probe?

They may look different, but ultimately the information
contained is

— Kinematic properties and interactions of the various
types of stuff in the universe; good for neutrino physics

Neutrino masses, ), m,, (large-scale structure)

Neutrino decay/lifetime, 7, (CMB)
Non-standard neutrino interactions (CMB)
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Neutrino free-streaming & the CMB...

Standard neutrinos free-stream.

* Free-streaming in a spatially inhomogeneous background induces
* Conversely, transfer momentum and

Free-streaming case Interacting case

Scattering transfers
momentum and
wipes out shear

* Neutrino shear stress (or lack thereof) leave distinct

— Affects the evolution of CMB perturbations; observable in the TT spectrum.
30



Neutrino free-streaming & the CMB...

That is well known.
1L | e — S S -
—— Maximum Likelihood Best Fit (Spergel et.al.)
6000 - ___ No Neutrino Anisotropies c:m—ﬂ /.\\ 7
*  WMAP st ycar data 3 ‘.‘
5000 \ .
%
;1 4000 F *\ i
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£ 2000 i&f\ \ |
1000 |- = —F > \“\\%‘
Ol .1, L . . ! . 0t B
200 400 600 800 10001200 . 10 100 1000
l Hannestad 2005 Multipole / Melchiorri & Trotta 2005
e The trickis in translating this preference to constraints on the of a
non-standard neutrino interaction —> What is the ?

— Isotropisation timescale should not be longer than the CMB timescale (400k years).
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Isotropisation from relativistic (inverse) decay...

Consider vy — v; + ¢ and its inverse process.

= How long it takes for decay and inverse decay to wipe out the
momentum anisotropy in a fluid element.

-

¢

Vi

Isotropisation
timescale

. . . -2
|sotropisation is a Tisotropise ~ (qugvl) YvH Trest

In relativistic decay, the decay products are beamed.
Inverse decay can also only happen when the daughter
particles satisfy strict momentum/angular requirements.

Chen, Oldengott, Pierobon & Y3W 2022
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CMB lower bounds on the neutrino lifetime...

Mass-spectrum consistent constraints on invisible neutrino decay vy — v; + ¢.
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100 E T T T LI B B I T T T T 1 W/T’Yi 108 T T T T T T 171 I T T T T L l; 108 T T T T 1 17T I T T T T T 17T T;
g . ;/’5 F A2 E E A3 1
108 vy = v,,,(NO _-=22" 4 L A2, my =0 1 L A3, my =0 i
f 3 2+1( )—————_:4” = 10 E——' IceCube 8 yr § 10 ;——' IceCube 8 yr §
—_ 107 E === E EEEEE Combined v telescopes 3 R Combined v telescopes ]
= E V241 = v3(10) 1 10k SN1987A o 10°F SN1987A =
o 10°F 3 F IC 2015 3 F IC 2015 E
S 10°F ] wE 3 10°F E
E F—w 1 F 1 F ;
RE TS AL, =0 4 10'E 4 10'F =
= R Bl 1 Py E HT TS UUPRPPROPPT L E
Q BL== Bl,m,=0 === o T e . B E
g We2™ T E T S A o 10k e -
= I I Frmmoo o n e o § E =
g 102 E—— B2,m, =0 — = Sy it = N =
) F ==+ IceCube 8 yr 1 02F-———"""""""7" =4 10%F . -
2 10 E === Combined v telescopes DR E I 3 = E
E Al IeeCube hint : S 3 10t R IceCube constraints 1 0L ]
10°E SN1987A = g E g E
F IC 2015 E - ] - ]
101 I L I | L I Lo 100 = I I [ R A | I I R BN 100 L= I I [ R A | I Lo
1073 1072 107171073 10-2 107! 71073 1072 107!
my, ms (eV) my (eV) mg (eV)

Chen, Oldengott, Pierobon & Y3W 2022
* |nsome scenarios, neutrino telescopes and CMB probe the same parameter Space.
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2. What can neutrino physics do for
cosmology?



What can neutrino physics do for cosmology?

Parameter estimation from cosmological observations is based on

e Observations the dark matter density or the dark energy equation of
state, and much less anything about inflation.

* Inference always assumes a model:
— The less the model uncertainty, the more the parameter estimates.

* Neutrinos are unique in that they are the only cosmologically significant component that has a
and whose

— Eliminating uncertainty in the neutrino sector will help us pin down other cosmological
parameter inaccessible in the laboratory.
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What can neutrino physics do for cosmology?

Ultimate prize =

* Bestidea uses the -decay end-point spectrum — Goes hand-in-hand with direct neutrino

mass detection. Weinberg 1962
Cocco, Mangano & Messina 2007

N->N+e +7,
VSVBEN - N' + e~
Rate~7.5/year /(100 tritium)
KATRIN source:
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What can neutrino physics do for cosmology?

Ultimate prize =
* Best idea uses the f-decay end-point spectrum — Goes hand-in-hand with direct neutrino

mass detection. 120 5
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Summary...

* The existence of a cosmic neutrino background is a of
SM+FLRW cosmology.

— Precision cosmological observations have allowed us to infer the properties of this
background, from which to determine neutrino properties.

— e.g., masses, effective number of neutrinos, non-standard interactions, lifetime.

* Conversely, better determination of neutrino properties in laboratory experiments

will allow us to eliminate some model uncertainty in the cosmological parameter
inference exercise.

— More precise and accurate constraints on the dark matter density, dark energy properties,
inflationary physics, and other cosmological physics inaccessible in the laboratory.
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