Beyond the Standard Model in the Neutrino Sector

Snowmass Neutrino Colloquium

20 April, 2022

Zahra Tabrizi

Neutrino Theory Network (NTN) fellow

Northwestern University

Status of Neutrino Physics in 2022

Super-Kamiokande, Borexino, SNO

atmospheric

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

IceCube, Super-Kamiokande

OK MINOS NOVA

T2K, MINOS, NOvA

 $\begin{array}{c} {}_{\rm mixing \ angles:}\\ sin^2\theta_{12} @ 4\%\\ sin^2\theta_{13} @ 3\%\\ sin^2\theta_{23} @ 3\% \end{array}$

mass squared differences: $\Delta m^2_{21} @ 3\%$ $|\Delta m^2_{31}| @ 1\%$

Future: DUNE, T2HK , JUNO

- Increase the precision
- CP-phase
- Mass hierarchy

Also:

Mass scale? Dirac or Majorana? Sterile?

4/20/2022

Zahra Tabrizi, NTN fellow, Northwestern

Questions:

- How can we systematically use different neutrino experiments for BSM searches?
- How can we connect results to other particle physics experiments?
- Can neutrino experiments probe compelling new physics beyond the reach of high energy colliders?

- I am biased;
- Taking DUNE as an example for most cases, while the overall search strategies are applicable to other similar experiments, e.g. Hyper-K, JUNO, etc.;
- See the talks of Joachim Kopp and Georgia Karagiorgi for a more complete picture;

Physics goals of near detectors:

Primary role: Understanding Systematic Uncertainties

- Test SM predictions
- Search for BSM physics

Neutrino Experiments as Dark Sector factories!

Credit: Kevin Kelly

The huge fluxes of neutrinos and photos can be used for BSM searches

• Heavy Neutral Leptons, Dark Photon, light DM, etc

Berryman et al, PRD (2018) Breitbach et al, JHEP (2022) De Romeri et al, PRD (2019) Magill et al, PRL (2019)

Outline

- Dark Sector at the Near Detectors:
 - ALPs
 - Light Dark Matter
 - Light Z'
- Model independent approach:
 - Why EFT?
 - EFT ladder
 - EFT at Neutrino Experiments
- Conclusion

Dear google: not all ALPs are Mountains!

The **Alps** are the highest and most extensive mountain range system that lies entirely in Europe, stretching approximately 750 mi (1,210 km) across eight ...

Age of rock: TertiaryPeak: Mont BlancWidth: 250 km (160 mi)Area: 200,000 km2 (77,000 sq mi)

Geography of the Alps \cdot Alps (disambiguation) \cdot Alpine mountains above 3000 m

Axion-Like Particles (ALPs)

- (pseudo)scalars, strongly motivated by theory and cosmology;
- Why is CP conserved in QCD?
 Solution to the strong CP problem (QCD axion);
- DM candidates;
- Offer new experimental approaches towards the dark sector;

ALPs at Neutrino Experiments

Credit: Kevin Kelly

Using photons to produce ALPs:

$$\mathcal{L}_{a\gamma\gamma} \supset -rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u}$$

ALPs at Neutrino Experiments

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRL (2021)

ALPs at Neutrino Experiments

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRL (2021)

Outline

- Dark Sector at the Near Detectors:
 - − ALPs 🗸
 - Light Dark Matter
 - Light Z'
- Model independent approach:
 - Why EFT?
 - EFT ladder
 - EFT at Neutrino Experiments
- Conclusion

"How is Dark Matter?"

TOM GAULD for NEW SCIENTIST

Light Dark Matter

Photons at the target kinetically produce Dark Photons, which decay into dark matter:

$$\mathcal{L} \supset -rac{arepsilon}{2}F^{\mu
u}F'_{\mu
u} + rac{M^2_{A'}}{2}A'_{\mu}A'^{\mu} + |D_{\mu}\phi|^2 - M^2_{\phi}|\phi|^2 \ D_{\mu} = \partial_{\mu} - ig_DA'_{\mu}, \ g_D = \sqrt{4\pilpha_D}$$

De Romeri, Kelly, Machado, PRD (2019)

Light Dark Matter

DM signal: elastic scattering on electrons

How can we get rid of neutrinos in a neutrino detector?

Light Dark Matter---DUNE Beam Dump

• Similar to MiniBooNE beam dump DM search

- Reduce ν production by steering beam to miss the target (horn powered off)
- Charged mesons absorbed in the Al beam dump before decay \rightarrow reduces the ν flux

Light Dark Matter---DUNE Beam Dump

Scalar dark matter: $m_V = 3m_{\phi}$, $\alpha_D = 0.1$

DUNE-beam dump can do even better than LDMX in just 3 months!

Bhattarai, Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu (In preparation)

Light Dark Matter---DUNE Beam Dump

Scalar dark matter: $m_V = 3m_{\phi}$, $\alpha_D = 0.1$

Outline

- Dark Sector at the Near Detectors:
 - − ALPs 🗸
 - − Light Dark Matter ✓
 - Light Z'
- Model independent approach:
 - Why EFT?
 - EFT ladder
 - EFT at Neutrino Experiments
- Conclusion

• Low Energy Experiments

Miranda et al, JHEP (2020) Coloma et al, JHEP (2021) Caddedu et al, JHEP (2021)

Fixed Target Experiments

Gninenko, PLB (2012) Tsai et al, PRL (2021) Bauer et al, JHEP (2018)

Neutrino Trident Searches

Altmannshofer et al, PRL (2014) Ballet et al, JHEP (2019)

Neutrino-Electron Scattering

Harnic et al, JCAP (2012) Lindner et al, JHEP (2018) Ballet et al, JHEP (2019)

• Colliders

BaBar Collaboration, PRL (2014) BaBar Collaboration, PRL (2017)

Cosmology

Escudero et al, JHEP (2019)

What can we learn from neutrino experiments?

$$\mathcal{L}_{Z'}^{\text{matter}} = -g' \big(a_u \, \bar{u} \gamma^{\alpha} u + a_d \, \bar{d} \gamma^{\alpha} d + a_e \, \bar{e} \gamma^{\alpha} e \\ + b_e \, \bar{\nu}_e \gamma^{\alpha} P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^{\alpha} P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^{\alpha} P_L \nu_\tau \big) Z'_\alpha$$

The list is far from being exhaustive!

• Low Energy Experiments

Miranda et al, JHEP (2020) Coloma et al, JHEP (2021) Caddedu et al, JHEP (2021)

Fixed Target Experiments

Gninenko, PLB (2012) Tsai et al, PRL (2021) Bauer et al, JHEP (2018)

Neutrino Trident Searches
 Altmannshofer et al, PRL (2014)

Ballet et al, JHEP (2019)

Neutrino-Electron Scattering

Harnic et al, JCAP (2012) Lindner et al, JHEP (2018) Ballet et al, JHEP (2019)

• Colliders

BaBar Collaboration, PRL (2014) BaBar Collaboration, PRL (2017)

Cosmology

Escudero et al, JHEP (2019)

What can we learn from neutrino experiments?

 $\mathcal{L}_{Z'}^{\text{matter}} = -g' \big(a_u \, \bar{u} \gamma^\alpha u + a_d \, \bar{d} \gamma^\alpha d + a_e \, \bar{e} \gamma^\alpha e$ $+ b_e \, \bar{\nu}_e \gamma^\alpha P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^\alpha P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^\alpha P_L \nu_\tau \big) Z'_\alpha$

The list is far from being exhaustive!

Neutrino Trident Scattering

Trident rates at LAr Detectors

Coherent (upper) and diffractive (lower) trident events for (anti)neutrino mode

More than 9,000 trident events at DUNE!

Ballett, Hostert, Pascoli, Perez-Gonzalez, ZT and Funchal, PRD (2019)

Light Z': L_{μ} - L_{τ} Model

- Z' only couples to muon and tau, but not to electrons;
- It can explain the muon (g-2) anomaly;
- Can be best probed using tridents;

HE colliders only have

Light Z': L_{μ} - L_{τ} Model

DUNE

$\varepsilon = \frac{eg'}{12\pi^2} \ln \frac{m_\mu^2}{m_\pi^2}$ ATLAS 10^{-2} -e@DUNE Borexino CMS 9, **BaBar** 4μ Tridents@DUNE CCFR 10^{-3} · DUNE 90% C.L. $\mu^+\mu^-$ trident $(g-2)_{\mu} \pm 2\sigma$ $\Delta N_{\rm eff} > 0.5$ $\nu - e$ scattering 10^{-4} 10^{-2} 10^{-1} 10^{0} 10^{1} $M_{Z'}$ (GeV)

Ballett, Hostert, Pascoli, Perez-Gonzalez, ZT and Funchal, PRD (2019)

The whole g-2 region can be probed by DUNE data!

Outline

- Dark Sector at the Near Detectors:
 - − ALPs 🗸
 - − Light Dark Matter ✓
 - Light Z' 🗸
- Model independent approach:
 - Why EFT?
 - EFT ladder
 - EFT an Neutrino Experiments
- Conclusion

• Coherent CC and NC forward scattering of neutrinos

• New 4-fermion interactions

- Observable effects at neutrino production/propagation/detection?
- Using "EFT" formalism to "systematically" explore NP beyond the neutrino masses and mixing

Fantastic Beasts and Where To Find Them

- It is likely the new degrees of freedom beyond the SM may not be directly available at LHC or even future colliders.
- However, even if it's not possible to see the head, perhaps we can see the tail?

EFT ladder

SMEFT: minimal EFT above the weak scale

EFT ladder WEFT: Effective Lagrangian defined at a low scale $\mu \sim 2$ GeV

• CC: New left/right handed, (pseudo)scalar and tensor interactions

$$\mathcal{L}_{\text{WEFT}} \supset -\frac{2V_{ud}}{v^2} \{ [\mathbf{1} + \epsilon_L_{\alpha\beta} (\bar{u}\gamma^{\mu}P_L d)(\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) + \epsilon_R_{\alpha\beta} (\bar{u}\gamma^{\mu}P_R d)(\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) + \frac{1}{2} \epsilon_S_{\alpha\beta} (\bar{u}d)(\bar{\ell}_{\alpha}P_L\nu_{\beta}) - \frac{1}{2} \epsilon_P_{\alpha\beta} (\bar{u}\gamma_5 d)(\bar{\ell}_{\alpha}P_L\nu_{\beta}) + \frac{1}{4} (\hat{\epsilon}_T_{\alpha\beta} (\bar{u}\sigma^{\mu\nu}P_L d)(\bar{\ell}_{\alpha}\sigma_{\mu\nu}P_L\nu_{\beta}) + \text{h.c.} \}$$

• NC: New left and right handed interactions

$$\mathcal{L}_{ ext{WEFT}} \supset -rac{2}{v^2} \epsilon^{fX}_{lphaeta} (ar{
u}_{lpha} \gamma^{\mu} P_L
u_{eta}) \left(ar{f} \gamma_{\mu} P_X f
ight)$$

EFT at neutrino experiments

EFT at FASERv

- Downstream of ATLAS at of 480 m;
- Ideal for detecting high-energy neutrinos at LHC;
- 1.1-t of tungsten material;
- Several production modes;
- Pion and Kaon decays are the dominant ones;
- All (anti)neutrino flavors are available;

EFT at FASERv

- FASERv: colored bars
- Top: Conservative/Optimistic flux uncertainties
- Bottom: High luminosity LHC

- Neutrino detectors can identify flavor: 81 operators at FASERv
- New physics reach at multi-TeV
- Complementary or dominant constraints

4/20/2022

How about DUNE-like experiments?

• 0.1-10 GeV energy range: cross section is much more involved!

e.g.: Quasi-Elastic scattering at the nucleon level

Outline

- Dark Sector at the Near Detectors:
 - − ALPs 🗸
 - − Light Dark Matter ✓
 - Light Z' 🗸
- Model independent approach:
 - − Why EFT? ✓
 - − EFT ladder ✓
 - EFT an Neutrino Experiments \checkmark
- Conclusion

Conclusion:

- New generation of neutrino experiments are being built to answer many unknowns in the neutrino sectors;
- We can use the near detectors to directly search for dark sector (e.g.: ALPs, light DM, Light Z', etc.);
- For several BSM models, near detectors give the best constraints;
- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables using the EFT formalism;
- Unlike other probes (meson decays, ATLAS and CMS analyses, etc.) neutrino experiments have the unique capability to identify the neutrino flavor. This is crucial complementary information in case excesses are found elsewhere in the future;
- Future directions: Systematic model-independent global analyses of new physics in neutrino oscillation experiments with:
 - i) Power counting of EFT effects;
 - ii) Extraction of oscillation parameters in presence of general new physics;
 - iii) Comparison between the sensitivity of oscillation and other experiments.

I'M now going to open the FLOOR to questions.

Back up Slides

Axion Like Particles (ALPs) at DUNE:

Photon Flux from GEANT4 Simulation

G4 γ flux stacked histogram

V. Brdar, B. Dutta, W. Jang, D. Kim, I. Shoemaker, **ZT**, A. Thompson, J. Yu Phys.Rev.Lett. 126 (2021) 20, 201801

Axion Like Particles (ALPs) at DUNE:

• Coherent π^0 production $\nu + A \rightarrow \nu + A + \pi^0$

In GAr:

- We expect ~ 10⁶ NC events;
- Vetoing events with hadronic activity remove ~ 80%;
- A cut on the opening angle removes the rest;

V. Brdar, B. Dutta, W. Jang, D. Kim, I. Shoemaker, **<u>ZT</u>**, A. Thompson, J. Yu Phys.Rev.Lett. 126 (2021) 20, 201801

Light Dark Matter

• Challenge: elastic neutrino-electron scattering is a huge background!

De Romeri, Kelly, Machado, PRD (2019)

Light Dark Matter

• DUNE can do half an order of magnitude better than existing constraints

Breitbach, Buonocore, Frugiuele, Kopp, Mittnacht, JHEP (2022) Also: De Romeri, Kelly, Machado, PRD (2019)

Light Dark Matter---DUNE Beam Dump

• The ν flux decreases by 5 orders of magnitude $\rightarrow \mathbb{N}o \nu$ -e background!

EPA assumptions

1) Neglecting the L contribution ($h^{\rm L}(q^2, \hat{s}) \sigma^{\rm L}_{\nu\gamma}(q^2, \hat{s}) \approx 0$).

2) Taking the T contribution of the cross section to be on-shell ($\sigma_{\nu\gamma}^{\rm T}(q^2, \hat{s}) \approx \sigma_{\nu\gamma}^{\rm T}(0, \hat{s})$).

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

Trident Cross Sections

4/20/2022

49

Trident rates at LAr Detectors

Zahra Tabrizi, NTN fellow, Northwestern

JHEP **1901**, 119 (2019) 50

Trident background analysis

Genuine dilepton production is rare, but misID of particles is the problem.

		Channel	$\mathbf{N}_{\mathrm{B}}^{\mathrm{misID}}/\mathbf{N}_{\mathrm{CO}}$;	$N_{\rm B}^{\rm had}/N_{\rm C}$	C	N	$_{\rm B}^{\rm kin}/{ m N}_{ m c}$	CC	
misID		$e^{\pm}\mu^{\mp}$	1.67 (1.62) >	< 10 ⁻⁴	2.68 (4.31)	$) \times 10^{-1}$	⁻⁵ 4.	40 (3.1	$(7) \times 10$	0 ⁻⁷
		e^+e^-	2.83 (4.19) >	$< 10^{-4}$	1.30 (2.41)) × 10 ⁻	⁻⁴ 6.	54 (14	$.1) \times 10^{-1}$	0 ⁻⁶
γ as e^{\perp}		$\mu^+\mu^-$	2.66 (2.73) >	$< 10^{-3}$	10.4 (9.75)	$) \times 10^{-1}$	⁻⁴ 3.	36 (3.1	$(0) \times 1$	0^{-8}
γ as e^+e^-							00	00		r -
1 00 0 0	1				Ntot	$r_{ u_{\mu}}^{cc}$	$r_{\overline{\nu}_{\mu}}^{CC}$	$r_{\nu_e}^{cc}$	$r_{\overline{\nu}_e}^{CC}$	2
				ν -mode	4.25×10^{8}	0.964	0.028	0.007	0.001	
π^{\pm} as μ^{\pm}				$\overline{\nu}$ -mode	1.74×10^{8}	0.201	0.790	0.004	0.005	
					$N_{ m tot}^{NC}$	$r^{NC}_{ u_{\mu}}$	$r^{NC}_{\overline{ u}_{\mu}}$	$r_{ u_e}^{NC}$	$r^{NC}_{\overline{ u}_e}$	
				ν -mode	1.48×10^8	0.956	0.037	0.006	0.001	
				$\overline{\nu}$ -mode	7.58×10^{7}	0.157	0.835	0.003	0.005	

Reaching background rates of $O(10^{-6}-10^{-5})$ times the CC rate is necessary to observe trident events at DUNE ND, which is an attainable goal in a LAr detectors.

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

We apply consecutive cuts on the background, starting with cuts on the separation angle $\Delta \theta$ (red), both charged lepton angles to the beamline (θ_+ and θ_-) (orange) and the invariant mass.

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019)

Trident rates at other Near Detectors

Experiment	Material	Baseline (m)	Exposure (POT)	Fiducial Mass (t)	\mathbf{E}_{ν} (GeV)
INGRID	Fe	280	$3.9\times 10^{21}~[10^{22}]~{\rm T2K\text{-}I}~[{\rm T2K\text{-}II}]$	99.4	0 - 4
MINOS[+]	Fe and C	1040	$10.56(3.36)[9.69] imes 10^{20}$	28.6	0 - 20
ΝΟνΑ	C_2H_3Cl and CH_2	1000	8.85(6.9) $[36(36)] \times 10^{20} [NO\nu A-II]$	231	0 - 20
$MINER \nu A$	$\mathrm{CH},\mathrm{H}_{2}\mathrm{O},\mathrm{Fe},\mathrm{Pb},\mathrm{C}$	1035	$12(12) \times 10^{20}$	7.98	0 - 20

All have finished data taking or are still running

Trident rates at other Near Detectors

Channel	T2K-I	T2K-II	MINOS	MINOS+	ΝΟνΑ-Ι	$NO\nu A-II$	MINER _ν A
Total $e^{\pm}\mu^{\mp}$	563	1444	222 (56)	730	83 (72)	340 (374)	149 (102)
	96	246	46 (11)	151	25 (22)	102 (114)	56 (39)
Total e^+e^-	277	711	61 (15)	62	29 (22)	119 (114)	39 (27)
	24	62	9 (2)	8	4 (4)	16 (21)	10 (7)
Total $\mu^+\mu^-$	30	76	26 (6)	86	9 (9)	37 (47)	18 (13)
	21	54	15 (3)	49	8 (8)	34 (36)	18 (13)

Coherent (upper) and diffractive (lower) trident events for (anti)neutrino mode.

Ballett, Hostert, Pascoli, Perez, <u>ZT</u> and Funchal JHEP **1901**, 119 (2019) We study potential constraints which can be placed on a general set of leptophilic Z' models in the two most likely channels for BSM scattering at the near detector of DUNE: neutrino-electron scattering and neutrino trident scattering.

$$\mathcal{L} \supset -g' Z'_{\mu} \left[Q^{\mathrm{L}}_{\alpha} \overline{L^{\alpha}_{L}} \gamma^{\mu} L^{\alpha}_{L} + Q^{\mathrm{R}}_{\alpha} \overline{\ell^{\alpha}_{R}} \gamma^{\mu} \ell^{\alpha}_{R} + \sum_{\mathrm{N}} Q_{\mathrm{N}} \overline{N_{R}} \gamma^{\mu} N_{R} \right]$$

- We focus on the anomaly free leptophilic extensions of the SM: $L_{\alpha}-L_{\beta}, \alpha, \beta = \{e, \mu, \tau\}, \alpha \neq \beta.$
- Anomaly free conditions fix the charges

Ballett, Hostert, Pascoli, Perez-Gonzalez, **ZT** and Funchal Phys.Rev. **D100** (2019) no.5, 055012

Trident kinematical distributions

The invariant mass

Charged lepton separation angle

Ballett, Hostert, Pascoli, Perez-Gonzalez, **ZT** and Funchal Phys.Rev. **D100** (2019) no.5, 055012

Neutrino-Electron scattering

The vector and axial couplings with Z':

$$\begin{split} C_{\alpha}^{\rm V} &= -\frac{1}{2} + 2s_{\rm W}^2 + \delta_{\alpha e} + \frac{Q_e^{\rm V}Q_{\alpha}^{\rm L}}{2\sqrt{2}G_F} \frac{(g')^2}{M_{Z'}^2 + 2m_e T_e},\\ C_{\alpha}^{\rm A} &= -\frac{1}{2} + \delta_{\alpha e} + \frac{Q_e^{\rm A}Q_{\alpha}^{\rm L}}{2\sqrt{2}G_F} \frac{(g')^2}{M_{Z'}^2 + 2m_e T_e}, \end{split}$$

Ballett, Hostert, Pascoli, Perez-Gonzalez, **ZT** and Funchal Phys.Rev. **D100** (2019) no.5, 055012

Neutrino-Electron scattering

The vector and axial couplings with Z':

$$\begin{split} C_{\alpha}^{\rm V} &= -\frac{1}{2} + 2s_{\rm W}^2 + \delta_{\alpha e} + \frac{Q_e^{\rm V} Q_{\alpha}^{\rm L}}{2\sqrt{2}G_F} \frac{(g')^2}{M_{Z'}^2 + 2m_e T_e}, \\ C_{\alpha}^{\rm A} &= -\frac{1}{2} + \delta_{\alpha e} + \frac{Q_e^{\rm A} Q_{\alpha}^{\rm L}}{2\sqrt{2}G_F} \frac{(g')^2}{M_{Z'}^2 + 2m_e T_e}, \end{split}$$

If we allow for kinetic mixing between the Z' and the SM gauge bosons, this kinetic mixing in the $L_{\mu} - L_{\tau}$ model also induces a v – e coupling:

$$C_{\alpha}^{\rm V} = -\frac{1}{2} + 2s_{\rm W}^2 + \delta_{\alpha e} + \frac{1}{\sqrt{2}G_F} \frac{g' e \,\varepsilon(q^2)}{M_{Z'}^2 + 2m_e T_e}$$

$L_e\text{-}L_\mu$ Model at DUNE:

Ballett, Hostert, Pascoli, Perez-Gonzalez, <u>ZT</u> and Funchal Phys.Rev. **D100** (2019) no.5, 055012

- The main constraint is from neutrino-electron scattering.
- The sensitive trident channels are: $\mu^{+}\mu^{-}$ and $e^{+}e^{-}$

WEFT Power Counting

• Dim-6:
$$\frac{\Delta R}{R_{SM}} = c \ \epsilon_X^2$$

- Dim-7: Cannot interfere with the SM amplitudes, suppressed! Liao et al, JHEP 08 (2020) 162
- Dim-8: $\frac{\Delta R}{R_{SM}} = \sqrt{c} \epsilon_8 E^2 / v^2$

EFT ladder

 At the energy scale of reactor neutrino experiments the relevant degrees of freedom are not quarks, but nucleons and nuclei. Matching this EFT to the WEFT Lagrangian we obtain the Lee-Yang Lagrangian:

 $E \ll m_7$

$$\mathcal{L}_{\mathrm{LY}} \supset -\frac{V_{ud}}{v^2} \{ g_V [\mathbf{1} + \epsilon_L + \epsilon_R]_{\alpha\beta} (\bar{p}\gamma^{\mu}n) (\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) \\ - g_A [\mathbf{1} + \epsilon_L - \epsilon_R]_{\alpha\beta} (\bar{p}\gamma^{\mu}\gamma_5 n) (\bar{\ell}_{\alpha}\gamma_{\mu}P_L\nu_{\beta}) \\ + g_S [\epsilon_S]_{\alpha\beta} (\bar{p}n) (\bar{\ell}_{\alpha}P_L\nu_{\beta}) - g_P [\epsilon_P]_{\alpha\beta} (\bar{p}\gamma_5 n) (\bar{\ell}_{\alpha}P_L\nu_{\beta}) \\ + \frac{1}{2} g_T [\hat{\epsilon}_T]_{\alpha\beta} (\bar{p}\sigma^{\mu\nu}P_L n) (\bar{\ell}_{\alpha}\sigma_{\mu\nu}P_L\nu_{\beta}) + \mathrm{h.c.} \},$$

• Lattice+theory fix the non-perturbative parameters with good precision

 $g_A = 1.2728 \pm 0.0017$, $g_S = 1.02 \pm 0.11$, $g_P = 349 \pm 9$, $g_T = 0.987 \pm 0.055$.

- T. Bhattacharya et al, Phys. Rev. D94 (2016), no. 5 054508
- M. Gonzalez-Alonso and J. Martin Camalich, Phys. Rev. Lett. 112 (2014), no. 4 042501
- M. Gonzalez-Alonso et al, Prog. Part. Nucl. Phys. 104 (2019) 165–223

EFT at FASERv

Falkowski, González-Alonso, Kopp, Soreq, ZT, JHEP (2021)

- Analysis is statistics dominated: $\nu_e \sim 1000$, $\nu_\mu \sim 5000$, $\nu_\tau \sim 10$
- Optimistic systematic uncertainties: 5% on ν_e , 10% on ν_{μ} , 15% on ν_{τ}
- Pessimistic systematic uncertainties: 30% on ν_e , 40% on ν_{μ} , 50% on ν_{τ}

RESULTS

RESULTS

Turning on one interaction at a time: Scalar

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, ZT JHEP 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

RESULTS

Turning on one interaction at a time: Tensor

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, ZT JHEP 10 (2021) 086

Optimistic (5%, 10%, 15%) and Pessimistic (30%, 40%, 50%), uncertainties on electron muon and tau neutrinos

EFT at FASERv

A. Falkowski, M. González-Alonso, J. Kopp, Y. Soreq, **<u>ZT</u>** *JHEP* 10 (2021) 086

FASERv Flavor Experiments

Colliders

Neutrino experiments:

Many more operators can be probed (81 at FASERv)

Low energy:

 Independent of the underlying high-energy theory

High-Energy:

- SMEFT is the underlying theory
- Bounds are less robust

Bounds shown in bold face have been calculated in this work

Coupling	Low energ	gy (WEFT)	High energy / CLFV (SMEFT)			
	90% CL bound	process	90% CL bound	process		
$[\epsilon_P^{ud}]_{ee}$	$4.6 imes10^{-7}$	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$				
$[\epsilon_P^{ud}]_{e\mu}$	$7.3 imes10^{-6}$	$\Gamma_{\pi \to e\nu} / \Gamma_{\pi \to \mu\nu}$ [7]	$2.0 imes10^{-8}$	$\mu ightarrow e$ conversion		
$[\epsilon_P^{ud}]_{e au}$	$7.3 imes10^{-6}$	$\Gamma_{\pi \to e\nu} / \Gamma_{\pi \to \mu\nu}$ [7]	$2.5 imes 10^{-3}$	LHC [64]		
$[\epsilon_P^{ud}]_{\mu e}$	$2.6 imes10^{-3}$	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$	$2.0 imes10^{-8}$	$\mu ightarrow e$ conversion		
$[\epsilon_P^{ud}]_{\mu\mu}$	$9.4 imes10^{-5}$	$\Gamma_{\pi ightarrow {f e} u}/\Gamma_{\pi ightarrow \mu u}$				
$[\epsilon_P^{ud}]_{\mu au}$	$2.6 imes10^{-3}$	$\mathbf{\Gamma}_{\pi ightarrow \mathbf{e} u}/\mathbf{\Gamma}_{\pi ightarrow \mu u}$				
$[\epsilon_P^{ud}]_{ au e}$	$9.0 imes10^{-2}$	$oldsymbol{\Gamma}_{ au ightarrow\pi u}$	$5.8 imes 10^{-3(st)}/4.4 imes 10^{-4}$	LHC [65] / $ au$ decay [64]		
$[\epsilon_P^{ud}]_{ au\mu}$	$9.0 imes10^{-2}$	$m{\Gamma}_{ au ightarrow \pi u}$	$5.8 imes 10^{-3(*)}$	LHC [65]		
$[\epsilon_P^{ud}]_{ au au}$	$8.4 imes 10^{-3}$	τ -decay [65]	$5.8 imes 10^{-3(*)}$	LHC [65]		
$[\epsilon_P^{us}]_{ee}$	$1.1 imes10^{-6}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$				
$[\epsilon_P^{us}]_{e\mu}$	$2.1 imes10^{-5}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$6.2 imes10^{-7}$	$\mu ightarrow e$ conversion		
$[\epsilon_P^{us}]_{e au}$	$2.1 imes10^{-5}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$7.1 imes 10^{-2}$	LHC [64]		
$[\epsilon_P^{us}]_{\mu e}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$	$6.2 imes10^{-7}$	$\mu ightarrow e$ conversion		
$[\epsilon_P^{us}]_{\mu\mu}$	$2.2 imes10^{-4}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$				
$[\epsilon_P^{us}]_{\mu au}$	$2.3 imes10^{-3}$	$\Gamma_{{f K} ightarrow {f e} u}/\Gamma_{{f K} ightarrow \mu u}$				
$[\epsilon_P^{us}]_{ au e}$	$6.4 imes10^{-2}$	$\Gamma_{ au ightarrow {f K} u} / \Gamma_{{f K} ightarrow \mu u}$	$3.1 imes 10^{-2(*)} / 8.1 imes 10^{-2}$	LHC (data [66])/ τ -decay [64]		
$[\epsilon_P^{us}]_{ au\mu}$	$6.4 imes10^{-2}$	$\Gamma_{ au ightarrow {f K} u} / \Gamma_{{f K} ightarrow \mu u}$	$3.1 imes 10^{-2(*)}$	LHC (data [66])		
$[\epsilon_P^{us}]_{\tau\tau}$	$1.3 imes 10^{-2}$	τ -decay [67]	$3.1 imes 10^{-2(*)}$	LHC (data [66])		
$[\epsilon_P^{cs}]_{ee}$	$4.8 imes10^{-3}$	$\Gamma_{{f D}_{f s} ightarrow {f e} u}$	$1.3 imes 10^{-2}$	LHC [68]		
$[\epsilon_P^{cs}]_{e\mu}$	$4.6 imes10^{-3}$	$\Gamma_{{f D}_{f s} ightarrow {f e} u}$	$1.3 imes 10^{-2} \ / \ \mathbf{2.7 imes 10^{-6}}$	LHC [68] / $\mu \rightarrow e$ conversion		
$[\epsilon_P^{cs}]_{e au}$	$4.6 imes10^{-3}$	$\Gamma_{{f D}_{f s} ightarrow {f e} u}$	$1.3 imes 10^{-2} \ / \ 1.9 imes 10^{-2}$	LHC / τ -decays [64, 68]		
$[\epsilon_P^{cs}]_{\mu e}$	$\mathbf{8.9 imes 10^{-3}}$	$\Gamma_{\mathbf{D_s} o \mu u}$	$2.0 imes 10^{-2}$ / $2.7 imes 10^{-6}$	LHC [68] / $\mu \rightarrow e$ conversion		
$[\epsilon_P^{cs}]_{\mu\mu}$	$1.0 imes10^{-3}$	$\Gamma_{\mathbf{D_s} o \mu u}$	$2.0 imes 10^{-2}$	LHC [68]		
$[\epsilon_P^{cs}]_{\mu au}$	$\mathbf{8.9 imes 10^{-3}}$	$\Gamma_{\mathbf{D_s} ightarrow \mu u}$	$2.0 imes 10^{-2}$	LHC [68]		
$[\epsilon_P^{cs}]_{ au e}$	$2.0 imes \mathbf{10^{-1}}$	$\Gamma_{\mathbf{D_s} o au u}$	$1.6 imes 10^{-2} \ / \ 1.9 imes 10^{-2}$	LHC / τ -decays [64]		
$[\epsilon_P^{cs}]_{ au\mu}$	$2.0 imes \mathbf{10^{-1}}$	$\Gamma_{\mathbf{D_s} o au u}$	$2.5 imes10^{-2}$	LHC [68]		
$[\epsilon_{D}^{cs}]_{\tau\tau}$	$\mathbf{3.2 imes 10^{-2}}$	$\Gamma_{\mathbf{D}_{e} \to \tau \nu}$	$2.5 imes 10^{-2}$	LHC [68]		

Neutrinos are not pure flavor states:

Neutrinos are not pure flavor states:

$$|\nu_{\alpha}^{s}\rangle = \frac{(1+\epsilon^{s})_{\alpha\gamma}}{N_{\alpha}^{s}}|\nu_{\gamma}\rangle \ , \ \ \langle\nu_{\beta}^{d}| = \langle\nu_{\gamma}|\frac{(1+\epsilon^{d})_{\gamma\beta}}{N_{\beta}^{d}}$$

Observable: rate of detected events

~(flux)×(det. cross section)×(oscillation)

$$R^{\rm QM}_{\alpha\beta} = \Phi^{\rm SM}_{\alpha} \sigma^{\rm SM}_{\beta} \sum_{k,l} e^{-i\frac{L\Delta m^2_{kl}}{2E_{\nu}}} [x_s]_{\alpha k} [x_s]^*_{\alpha l} [x_d]_{\beta k} [x_d]^*_{\beta l}$$

$$x_s \equiv (1 + \epsilon^s) U^* \& x_d \equiv (1 + \epsilon^d)^T U$$

Falkowski, González-Alonso, ZT, JHEP (2019)

- Can one "validate" QM-NSI approach from the QFT results?
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation?

- Can one "validate" QM-NSI approach from the QFT results? Yes...
- If yes, relation between NSI parameters and Lagrangian (EFT) parameters?
- Does the matching hold at all orders in perturbation? No...

Observable is the same, we can match the two (only at the linear level)

$$\epsilon^s_{\alpha\beta} = \sum_X p_{XL}[\epsilon_X]^*_{\alpha\beta}, \quad \epsilon^d_{\beta\alpha} = \sum_X d_{XL}[\epsilon_X]_{\alpha\beta}$$

Falkowski, González-Alonso, ZT, JHEP (2019)

Comparing QM and QFT

Only at the linear order:

Falkowski, González-Alonso, ZT, JHEP (2019)

Neutrino Process	NSI Matching with EFT				
ν_e produced in beta decay	$\epsilon_{e\beta}^{s} = [\epsilon_{L}]_{e\beta}^{*} - [\epsilon_{R}]_{e\beta}^{*} - \frac{g_{T}}{g_{A}} \frac{m_{e}}{f_{T}(E_{\nu})} [\epsilon_{T}]_{e\beta}^{*}$				
ν_e detected in inverse beta decay	$\epsilon^{d}_{\beta e} = [\epsilon_{L}]_{e\beta} + \frac{1 - 3g_{A}^{2}}{1 + 3g_{A}^{2}} [\epsilon_{R}]_{e\beta} - \frac{m_{e}}{E_{\nu} - \Delta} \left(\frac{g_{S}}{1 + 3g_{A}^{2}} [\epsilon_{S}]_{e\beta} - \frac{3g_{A}g_{T}}{1 + 3g_{A}^{2}} [\epsilon_{T}]_{e\beta} \right)$				
ν_{μ} produced in pion decay	$\epsilon^s_{\mu\beta} = [\epsilon_L]^*_{\mu\beta} - [\epsilon_R]^*_{\mu\beta} - \frac{m_\pi^2}{m_\mu(m_u + m_d)} [\epsilon_P]^*_{\mu\beta}$				

- Different NP interactions appear at the source or detection simultaneously
- Some of the p_{XL}/d_{XL} coefficients depend on the neutrino energy
- There are chiral enhancements in some cases

These correlations, energy dependence etc. cannot be

seen in the traditional QM approach.

Comparing QM and QFT

Beyond the linear order in new physics parameters, the NSI formula matches the (correct) one derived in the EFT only if the consistency condition is satisfied

$$p_{XL}p_{YL}^* = p_{XY}, \quad d_{XL}d_{YL}^* = d_{XY}$$

This is always satisfied for new physics correcting V-A interactions only as p_{LL} = d_{LL} = 1 by definition

However for non-V-A new physics the consistency condition is not satisfied in general

Zahra Tabrizi, NTN fellow, Northwestern Neutrino Energy E_v [GeV]
Specific New Physics Models

ε_L: measures deviations of the W boson to quarks and leptons, compared to the SM prediction

 ϵ_R : left-right symmetric SU(3)_CxSU(2)_LxSU(2)_RxU(1)_X models introduce new charged vector bosons W' coupling to right-handed quarks

 $\epsilon_{s,P,T}$: In leptoquark models, new scalar particles couple to both quarks and leptons

