

The Very-Low Energy Neutrino Factory (VLENF)

n physics with a µ storage ring

Alan Bross

SBNFG Open Meeting

March 21, 2012

2

30 Years in the Making

First proposed in detail by David Neuffer in 1980 at the Telemark Wisconsin workshop on neutrino mass

DESIGN CONSIDERATIONS FOR A MUON STORAGE RING

David Neuffer Fermi National Accelerator Laboratory*, Batavia, ILL 60510

ABSTRACT

It was noted earlier¹ that a muon (μ) storage ring can provide neutrino (ν) beams of precisely knowable flux and therefore suitable for ν oscillation experiments. In that paper it was suggested that parasitic use of the Fermilab \bar{p} precooler could provide a useful μ storage ring. In this paper design possibilities for μ storage rings are explored. It is found that a low energy (~1 GeV) ring matched to a high intensity proton source (8 GeV Booster) is most practical and can provide ν beams suitable for accurate tests of ν oscillations.

The technology existed then & It certainly exists now

Alan Bross

🛟 Fermilab

SBNFG Open Meeting

March 21, 2012

3

The Facility

Baseline(s)

100 kW Target Station Assume 60 GeV proton Fermilab PIP era Be target Ø Neutrino Beam ø Optimization on-going ø Li Lens or horn collection after target **Muon Decay** Collection/transport channel Ring ø Two options Stochastic injection of p 108 m ø Kicker with p ® mdecay channel At present NOT considering simultaneous collection of both signs Target Decay ring Large aperture FODO Ø Racetrack FFAG Ø Instrumentation Ø ø BCTs, mag-Spec in arc, polarimeter

🛟 Fermilab

Sergei Striganov Fermilab

o production

I n momentum range 2.7 < 3.0 < 3.3 Obtain 0.11 p⁺/pot 0.10 p⁻/pot with 60 GeV p

Target/capture optimization in progress

🛟 Fermilab

Alan Bross

FFAG Racetrack

Lagrange & Mori Kyoto

The Physics Reach

Assumptions

N_m = (POT) X (p/POT) X e_{collection} X e_{inj} X (mp) X A_{dynamic} X W <u>a</u> 10²¹ POT in 5 years of running @ 60 GeV in Fermilab PIP era

- ø 0.1 p/POT
- σ e_{collection} = 0.9
- ø e_{inj} = 0.9
- ø mp = 0.08 (gct X mcapture in p ® mdecay) [p decay in straight]

Might do better with a p ® mdecay channel

- σ A_{dynamic} = 0.9 (from G4Beamline simulation)
- ø W= Straight/circumference ratio (0.34)
- This yield 2 X 10¹⁸ useful mdecays

Experimental Layout

Appearance Channel: N_e ® N_m *Golden Channel*

Must reject the "wrong" sign mwith great efficiency

Why n_m® n_e Appearance Ch. not possible

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2(\frac{\Delta m_{41}^2L}{4E})$$

🛟 Fermilab

Baseline Detector Super B I ron Neutrino Detector: SuperBIND

Magnetized I ron

- 1 kT fiducial volume
 - Following MI NOS ND ME design
 - ø 1 cm Fe plate
 - ø 5 m diameter
- Utilize superconducting transmission line for excitation
 - Developed 10 years ago for VLHC
- Extruded scintillator
 +SiPM

20 cm hole For 3 turns of STL

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

Simulation

Full GEANT4 Simulation

Ryan Bayes Glasgow

- Extrapolation from ISS and IDS-NF studies for the MIND detector
- Uses GENIE to generate the neutrino interactions.
- Involves a flexible geometry that allows the dimensions of the detector to be altered easily (for optimization purposes, for example).
- Does not yet have the detailed B field, but parameterized fit is very good
- ø Event selection/cuts
 - ø Extrapolating from MIND (IDS-IDR)

$$e$$
 e_{event} = 0.7

ø
$$Bkg_{rej} = 10^{-4}$$

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

Event Candidates in SuperBIND

Hits R vs. Z

辈 Fermilab

Alan Bross

SBNFG Open Meeting

Chris Tunnell Oxford

	Channel name	Number Events		
$[\bar{\nu}$ -mode with stored μ^-]	$\bar{\nu}_e \to \bar{\nu}_\mu \ \mathrm{CC}$	72	ۍ د ر	1
	$\nu_{\mu} \rightarrow \nu_{\mu} \ CC$	211490	Assum	ption
	$\nu_{\mu} \rightarrow \nu_{\mu} \text{ NC}$	78457		
	$\bar{\nu}_e \to \bar{\nu}_e \ \mathrm{CC}$	71105	Contour	
	$\bar{\nu}_e \rightarrow \bar{\nu}_e \mathrm{NC}$	29613	that follo	plots w from
			GLoBES A	Analysis
	Channel name	Number Events	e _{evt} = Bkg _{rei} =	0.7 = 10 ⁻⁴
	$\nu_e \rightarrow \nu_\mu \ \mathrm{CC}$	191	Bkg uncertai	inty = 35%
$[\nu$ -mode with stored μ^+]	$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \ \mathrm{CC}$	87943	Systematic unc	er tainty = 2%
	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu} \ NC$	35993		
Appearance channels	$\nu_e \rightarrow \nu_e \ \mathrm{CC}$	179223		
	$\nu_e \rightarrow \nu_e \mathrm{NC}$	68552		
Fermilab Alan Bro	0SS	SBNFG Open Meeting	March 21, 2012	14

14

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

E_n of appearance events

16

$\overline{n_e} \otimes \overline{n_m}$ appearance

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

Cross-Section Measurements & Disappearance Searches

Cross-section measurements

mstorage ring presents only way to measure n_m& n_e
 (*n* and *n*) x-sections in same experiment
 Supports future long-baseline experiments

$$\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}$$

- Important to note that with θ₁₃ large, the asymmetry you're trying to measure is small, so:
 - Need to know underlying v/vbar flux & σ more precisely
 - Bkg content & uncertainties start to become more important

🛟 Fermilab

Alan Bross

n_e, n_m Disappearance Searches *Rates*

Detector mass – Near & Far

- ø 100T Near
- ø 1kT Far
- 10²¹ POT exposure (mt)
 - σ Number of n_e events (CC):
 - ø $N_{evts-near}$ » 1.8M
 - ø N_{evts-far} » 200k
 - Number of \overline{n}_m events (CC):
 - ø N_{evts-near} » 0.9M
 - ø N_{evts-far} » 100k
- S < 1% Measurements certainly possible from # events available</p>
 - n_e disappearance might require re-optimization (global) of detectors
- In addition, NC disappearance would provide very strong case for new physics
 - * 140k n $[n_m + n_e]$ NC interactions
 - ø Look for n + p ® n + p

Outlook

Future Work:

Secility

- Targeting, capture/transport & Injection
 - Need detailed design and simulation
- ø Decay Ring optimization
 - ø Continued study of both RFFAG & FODO decay rings
- ø Decay Ring Instrumentation
 - Define and simulate performance of BCT, polarimeter, Magneticspectrometer, etc.
- Produce full G4Beamline simulation of all of the above to define n flux
 - ø And verify the precision to which it can be determined.

Outlook I

Future Work:

Ø Detector simulation

- For oscillation studies, continue MC study of backgrounds & systematics
 - Also investigate disappearance channels
- In particular the event classification in the reconstruction needs optimization.
 - Currently assumes "longest track" is interaction muon.
 - Plan to assign hits to and fit multiple tracks.
 - ø Vertex definition must also be improved.
- For cross-section measurements need detector baseline design
 - ø Learn much from detector work for LBNE & IDS-NF
 - ${\it \it {\it O}}$ Increased emphasis on $n_{\rm e}$ interactions, however
 - Near Detector hall could be envisioned as n detector test facility

VLENF: Conclusions

The Physics case:

- Initial simulation work indicates that a L/E » 1 oscillation experiment using a muon storage ring can confirm/exclude at 10s (CPT invariant channel) the LSND/MiniBooNE result
- In and n disappearance experiments delivering at the <1% level look to be doable</p>
 - Systematics need careful analysis
 - Detailed simulation work on these channels has not yet started
- Cross section measurements with near detector(s) offer a unique opportunity
- The Facility:
- Presents very manageable extrapolations from existing technology
 - But can explore new ideas regarding beam optics and instrumentation
- Ø Offers opportunities for extensions
 - Add RF for bunching/acceleration/phase space manipulation
 - Provide msource for 6D cooling experiment with intense pulsed beam

VLENF: Conclusions I

The Detector:

- Is based on demonstrated technology and follows engineering principles from existing detectors
 - Technology extrapolations (scintillator readout) is perfectly aligned with development work within Fermilab's existing program (m2e)
 - Magnetization is based on technology that was fully vetted over 10 years ago
 - ø But has been in a dormant state

The VLENF:

Delivers on the physics for the study of sterile n

- Ø Offering a new approach to the production of n beams setting a 10 s benchmark to confirm/exclude LSND/MiniBooNE n-bar data
- Can add significantly to our knowledge of n cross-sections, particularly for n_e interactions
- Provides an accelerator technology test bed
 - But can also utilize existing accelerator infrastructure
- Provides a powerful n detector test facility

🛟 Fermilab

END

Thank You

Acknowledgements

Chuck Ankenbrandt⁵, Ryan Bayes², Alex Bogacz⁸, Herman Cease¹, John Cobb⁷, Malcolm Ellis⁹, Jim Kilmer¹, Joachim Kopp¹, Jean-Baptist Lagrange⁴, Ken Long³, Nikolai Mokhov¹, Yoshi Mori⁴, David Neuffer¹, Jaroslaw Pasternak³, Milorad Popovic¹, Tom Roberts⁵, Akira Sato⁶, Edward Santos³, Paul Soler², Sergei Striganov¹, Chris Tunnell⁷, Bob Wands¹, Walter Winter¹⁰ ¹Fermilab

²University of Glasgow ³Imperial College London ⁴Kyoto University ⁵Muons Inc ⁶Osaka University ⁷Oxford University ⁸TJNL ⁹Westpac-HEPh ¹⁰Universität Würzburg

辈 Fermilab

BACK UPS

ns from muon decay

• Running with m

$$\overline{m} \otimes e^{-} + n_m + \overline{n}_e$$

• Well defined flavor composition & energy

David Neuffer

🛟 Fermilab

Injection Concept

- $\ensuremath{\mathnormal{0}}\xspace \pi$'s are in injection orbit
 - separated by chicane
- μ's are in ring circulating orbit
 - ø lower energy ~2GeV/c
- 30cm separation between

Alan Bross

Concept works for FODO latticeWork in progress for RFFAG

March 21, 2012

SBNFG Open Meeting

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

FFAG Tracking

>90% dynamic aperture

32

Alan Bross

Akira Sato

Osaka University

🛟 Fermilab

SBNFG Open Meeting

G4Beamline Simulation Output n beam at monitor detector at L_D=26m

L_S=108 m, L_D=26 m

‡ Fermilab

Alan Bross

SBNFG Open Meeting

Accelerator Science

- A technology proving ground and a test bed for mstorage ring instrumentation (Goal of flux normalization to 1% or better)
 - s BCT
 - s Momentum spectrometer in arc(s)
 - s Polarimeter
 - s Beam divergence monitor
- Demonstration of new lattice design (Racetrack FFAG)
- Pathway to future maccelerator facilities

m stored: n_m spectra @ FD

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

Oscillation Probability

The oscillation probability for the "golden channel" $n_e \otimes n_m$ the (3+1) oscillation formalism & the LSND/MiniBooNE best-fit parameters

🛟 Fermilab

Alan Bross

Magnetized Iron Neutrino Detector (MIND) Re-Optimize for lower energy

- Reduce plate thickness (1 cm)
- ø 250 kA-turn excitation (SCTL)
- XY readout between planes

🛟 Fermilab

MCS not an issue

Detector simulated with 2 cm Fe Plate

‡ Fermilab

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

B Field Simulation

‡ Fermilab

Alan Bross

SBNFG Open Meeting

Detector Considerations

Other options

- ø Totally Active Scintillator TASD
- ø Lar

Present opportunity to measure n_e appearance?
 Must Be Magnetized, however

I bring this up because we have shown that at least one detector concept meets all our performance goals.

Alan Bross

SBNFG Open Meeting

Fine-Resolution Totally Active Segmented Detector (IDS-NF)

Simulation of a Totally Active Scintillating Detector (TASD) using Nona and Minerna concepts with Geant4

- 3333 Modules (X and Y plane)
- 🖬 Each plane contains 1000 slab
- u Total: 6.7M channels

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- Reconstructed position resolution ~ 4.5 mm

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

March 21, 2012

B = 0.5T

Magnet- Concept for IDS-NF

UNITS Longit Mage Flux Deresty

Magn Field

Mag: Sceler Pol. A

Magn Vector Pot

Elec RayDensky Dec Field

Outer's Density Press

Magratic Cavery Korf TOSCA Magnetisation Non-Intermetrials Caracterisation No. Let 1 19915 Advances

Conductury

50516 modes

10 conductors Riodoty interpolated texts with collidate by mangation Particular in XV piece (or 2 mich-0) Riafaction in 12 piece (or 2 mich-0) Riafaction in 22 piece (or 2 mich-0)

telo-() Local Coordinates Orgin CC 83 88 IntelOVZ - Date(202

Foior Energy

40

WA

Ym

1.00

VLHC SC Transmission Line

- Technically proven
- ø Affordable

R&D to support concept Has not been funded

- 1 m iron wall thickness. ~2.4 T peak field in the iron.
 - Good field uniformity

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

TASD Performance

n Event Reconstruction e

Muon charge mis-ID rate

Detector Options

Technology check List

	Fid Volume	В	Recon	Costing Model
SuperBIND				
Mag-TASD				
Mag-LAr				

Yes - OK
Maybe
Not Yet

Sensitivity in mcharge mis-ID rate - # mplane

🛟 Fermilab

Alan Bross

SBNFG Open Meeting

Disappearance Experiments

Disappearance @ VLENF

§ Lesson from reactor experiments: Near detectors to measure flux x cross sections

- S The challenge: there may be oscillations already in near detectors
- Self-consistent two-detector simulation including (binto-bin) uncorrelated shape error ~ 10%

(Concepts: Tang, Winter, arXiv:0903.3039; Giunti, Laveder, Winter, arXiv:0907.5487)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Geometry, optimization

20m+500m (Point A)

S Geometry important for Dm² ∼ 10¹ − 10³ eV² (here: ideally collimated beam, muon decay kinematics only!)

- Systematics (flux x cross secs) limits measurement for Dm² >> 10² eV²
 - How can one improve that? (NB: oscillation in ND!?)

(Winter, work in progress)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Conclusions

(Winter, work in progress)

- Optimal setup: ND as close as possible to source, FD ~ 250-500m (20+500m OK for appearance; Cobb, Tunnell, Bross, arXiv:1111.6550)
- Seed >> 10¹⁸ useful muon decays to fully exclude best-fit
- § Muon neutrino disappearance: conclusions similar