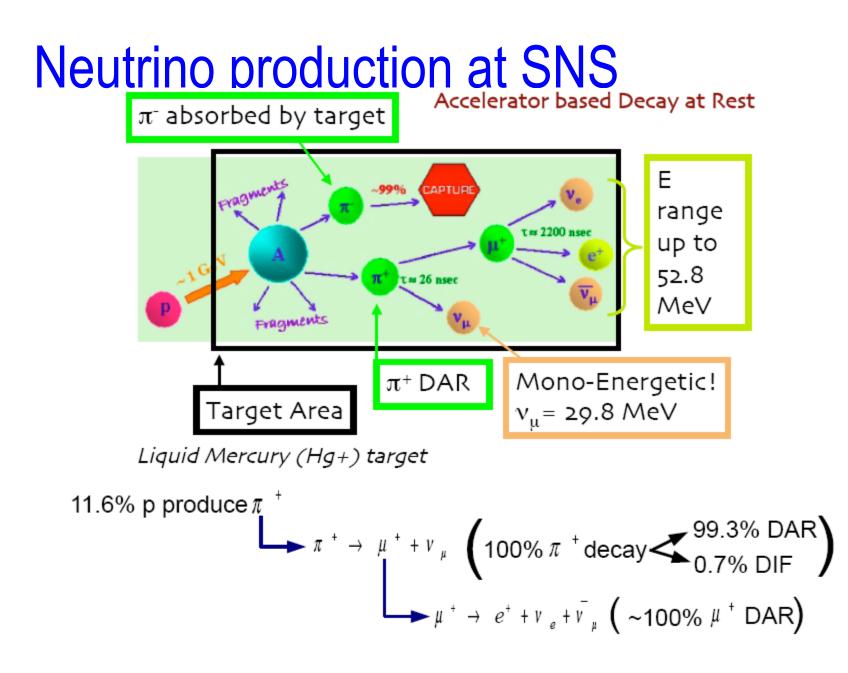
OscSNS: A Definitive Search for Sterile Neutrinos at the $\Delta m^2 \sim 1 \text{ eV}^2$ Scale

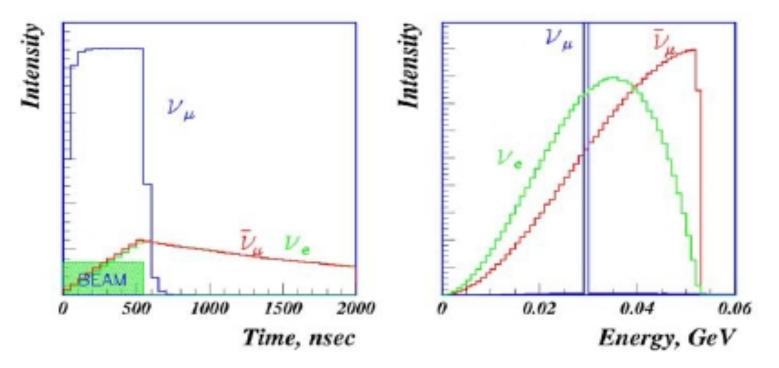
- Introduction & Motivation
- Spallation Neutron(ino) Source
- Physics Potential
- Stopped Pion source at FNAL
- Conclusions


Mercury target

Spallation Neutron Source Oak Ridge, Tennessee

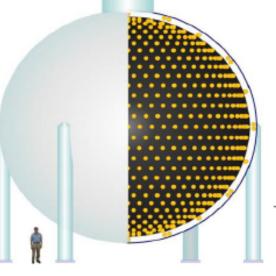
•1.3 GeV, 1.2 MWproton beam on Hg target production of spallation neutrons

•60 Hz with 695 ns pulse length•Neutrinos are for free!



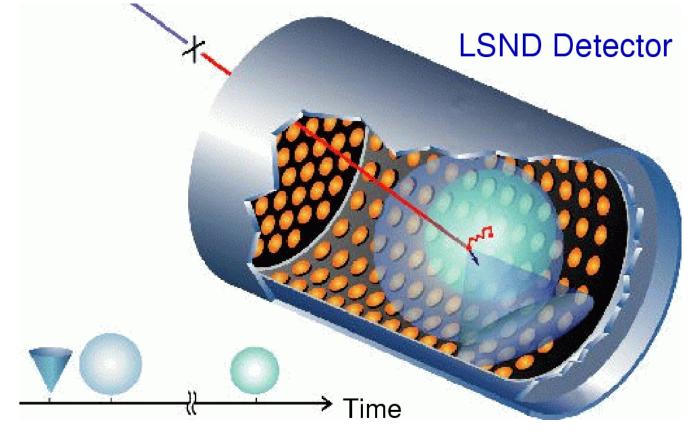
Stopped Pion/Muon Neutrino Source: Beam Time Structure and nu Flux Spectrum

→ Neutrino Flux from a Stopped Pion/Muon Source:


$\pi^+ \rightarrow \mu^+ \nu_\mu$,	$\tau=26nsec$	event types	$0 \rightarrow 0.695 \mu {\rm sec}$	$0.695 \rightarrow 5 \mu { m sec}$	$> 5\mu sec$
		π^+ DAR and π^\pm DIF events	96.3%	3.7%	0
$\mu^+ \rightarrow e^+ \bar{\nu}_{\mu} \nu_e$,	$\tau = 2.2 \mu sec.$	μ^+ DAR and oscillation candidates	14.3%	73.6%	12.1%

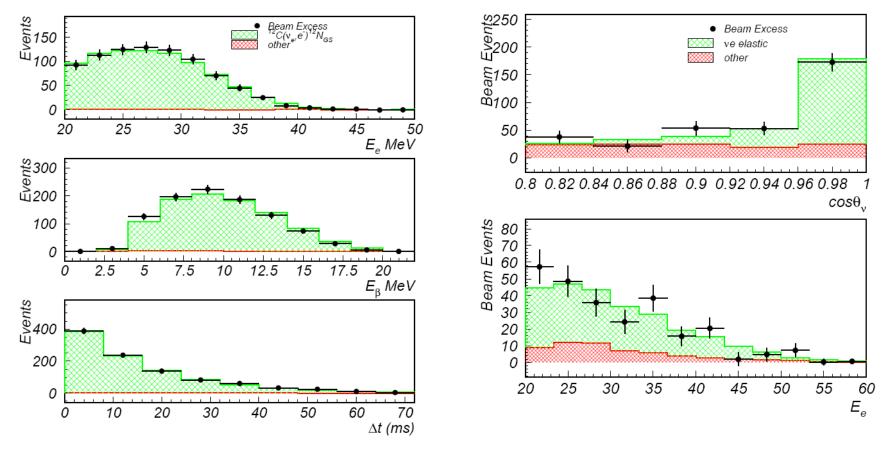
Neutrino Detection:

MiniBooNE-type detector



- 60 m upstream from the Hg target;
- 12-m diameter sphere (fiducial = 10 m);
- filled with 800 t of mineral oil CH₂(fiducial = 450 t) + ~30 kg of butyl-PBD scintillator;
- 3502 phototubes: 3262 in detector (25% coverage) and 240 in veto region;
- buried under 10 ft of dirt to suppress cosmic rays and beam-induced neutrons.
- -Currently no ideal location for near detector due to space constraints, closest spot is $\sim 20m$

The Liquid Scintillator Neutrino Detector Concept


- •Prompt Cherenkov light
- •Delayed scintillation light
- •Good electron ID, event timing, and spatial reconstruction

Detector calibration

- Many cosmic ray stopped muon decays
- 16N source: [16O(n, p)16N] producing a -tagged 6.1 MeV gamma-ray.
- 8Li source: electron energy spectrum up to 15 MeV.
- pT source: [3(p,)4He] producing a 19.8 MeV gamma-ray.
- 252Cf source: producing fission neutrons.

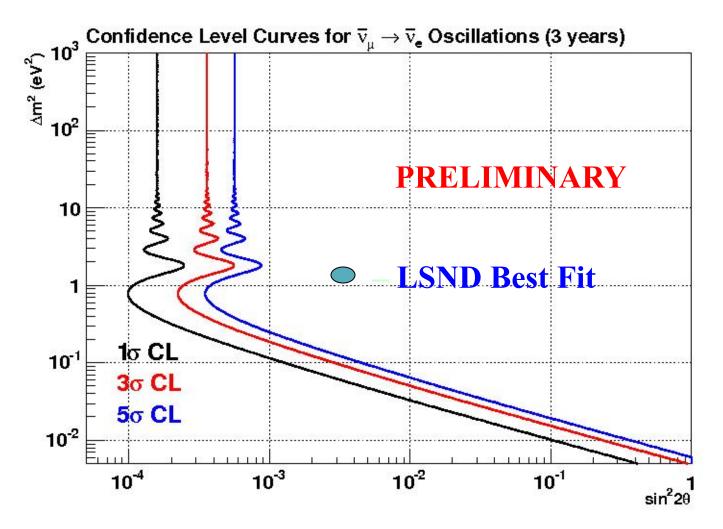
LSND Cross Sections

N12 ground state CC electrons

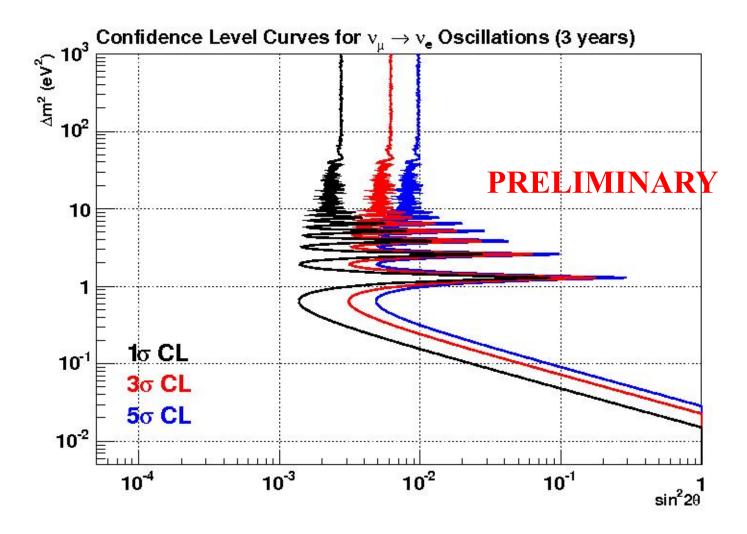
ve elastic electrons

OscSNS can repeat the LSND measurements with much higher precision and lower backgrounds plus additional measurements:

 $\begin{array}{l} \nu_{\mu} \rightarrow \nu_{e} \text{ appearance } (\nu_{e} \ ^{12}\text{C} \rightarrow e^{-12}\text{N}_{gs} + \beta) \\ \hline \nu_{\mu} \rightarrow \overline{\nu_{e}} \text{ appearance } (\nu_{e} \ p \rightarrow e^{+} \ n + \gamma) \\ \nu_{\mu} \text{ disappearance & search for sterile } \nu \\ (\nu_{\mu} \ ^{12}\text{C} \rightarrow \nu_{\mu} \ C^{*} + \gamma) \ (\sim 1300 \ \text{events per year}) \\ \nu_{e} \rightarrow \nu_{e} \ \text{elastic scattering } (\sim 1700 \ \text{ev. per year}) \\ \nu_{C} \ \text{cross sections } (\sim 4600 \ \text{events per year}) \end{array}$

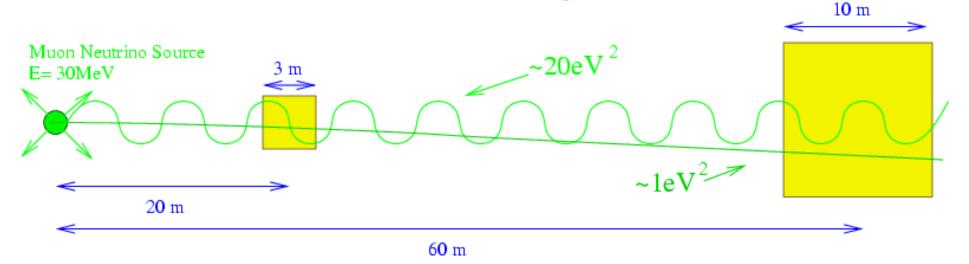

OscSNS Advantages Over Other Neutrino Oscillation Experiments

- Well understood v flux (~7%, maybe better)
- Well understood v flux spectrum
- Well understood v cross sections (1-2%)
- Low duty factor and good timing
- Absence of nuclear effects that can affect energy reconstruction
- Very low backgrounds (< 0.1%)
- Beam comes for free from the SNS
- SNS runs more than $\frac{1}{2}$ the year


OscSNS $v_{\mu} \rightarrow v_{e}$ Experiment vs LSND (assuming $\Delta m^{2} < 1 eV^{2}$)

- More Detector Mass (x5)
- Higher Intensity Neutrino Source (x2)
- Lower Duty Factor (x100) (less cosmic background)
- No DIF Background (backward direction)
- Lower Neutrino Background (x4) (60m vs 30m)
- Better Signal/Background (x4)
- For LSND parameters, expect ~350 v_e oscillation events & <50 background events per year!</p>

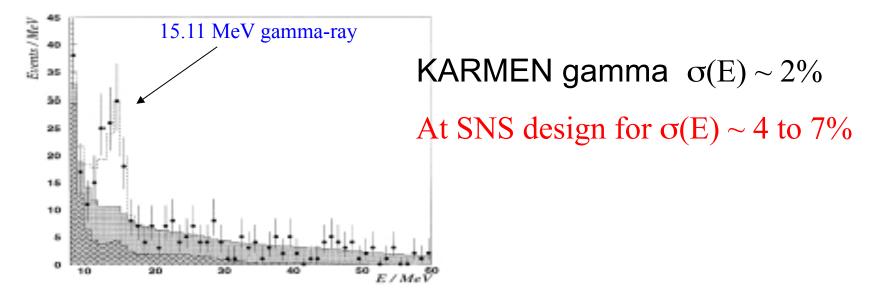
OscSNS Oscillation Sensitivities



OscSNS Oscillation Sensitivities

A Smoking Gun Search for Sterile Neutrinos Via Measurement of NC Reaction: $v_{\mu} C \rightarrow v_{\mu} C^{*}(15.11)$ Garvey et al., Phys. Rev. D72 (2005) 092001

Neutral Current Disappearance Pattern in a Two Detector Setup

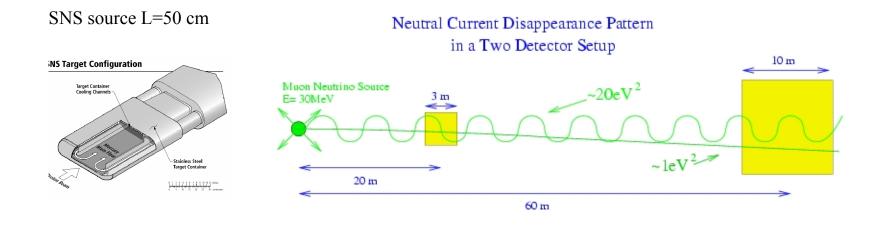

Active-Sterile Neutrino Oscillations with Stopped Pions (hep-hp/0501013)

- → If LSND oscillations is $v_{\mu} \rightarrow v_{s} \rightarrow v_{e}$, then we expect P($v_{\mu} \rightarrow v_{s}$) > 0.10
- → Can detect all neutrinos via NC reaction, $v_x^{12}C \rightarrow v_x^{12}C^*(15.11 \text{MeV})$.
- Since we have monoenergetic v_{μ} source, then look for NC rate distortion as a function of L.

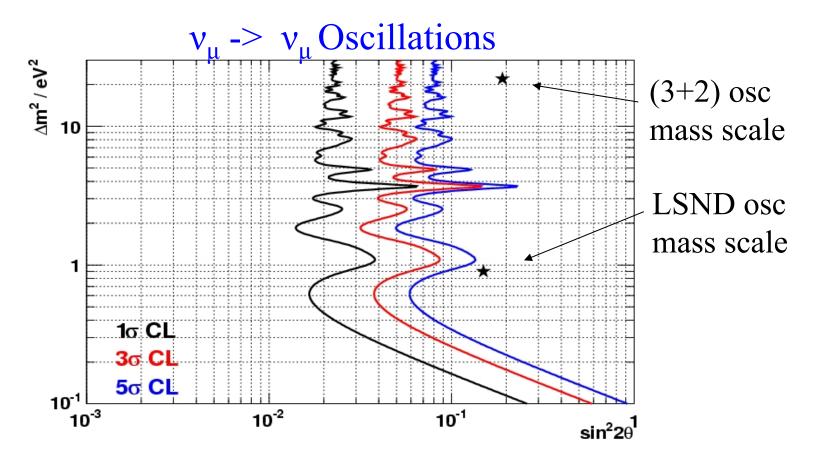
$$P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - \sin^{2}(2\theta) \sin^{2}(\frac{1.27}{30} \delta m^{2}L)$$

 $\Rightarrow 50 \text{ cm source size}$

 $\Rightarrow 60 \text{ cm gamma Compton scattering.}$


Sterile Neutrino Oscillations with $v_{\mu}^{12}C \rightarrow v_{\mu}^{12}C^*(15.11 \text{MeV})$

• KARMEN measures σ = (3.2±0.6) ×10⁻⁴² cm²


- Expected Backgrounds from NC $\,\bar{\nu}_{\!\mu}$ and CC $\nu_{\!e}^{},$ can be measured from beam off/out of time.

Sterile Neutrino Oscillations with $v_{\mu}^{12}C \rightarrow v_{\nu}^{12}C^*(15.11 \text{MeV})$

Detector	Source Dist. (m)	FD Size (tons)	FD Length (m)	$\nu_x \; ^{12}C \rightarrow \nu_x \; ^{12}C^*$ events/year
SNS Near	18	25	3	2056
SNS Far	60	500	10	3702

Sterile Neutrino Oscillations Sensitivity with SNS Source and Two Detectors (3 years), 5% flux+xsec systematic error.

Stopped Pion Source at FNAL

- MiniBooNE target are is a source of stopped pions! Calculated v_µ fluxes (Steve Brice):
 - LSND at 30m: 1.2x10⁶ v/cm²/s (detector 167 tons)
 - KARMEN at 17m: 1.6x10⁶ v/cm²/s (detector 56 tons)
 - OscSNS at 60m: 1.2x10⁶ v/cm²/s (proposed detector 1kton)
 - BNB at 15m: 0.7x10⁶ v/cm²/s
- However, MiniBooNE source very extended ~5m, and at higher energy there are Kaons (background or source?)
- Can build a dedicated target Hall on the BNB, take advantage of higher POT with Project X.

Conclusions

- A stopped pion beam provides a source of neutrinos with a well characterized flux (flavor, magnitude, and energy) and interaction cross sections.
- Using the stopped pion source at SNS could provide definitive (>5sigma) evidence that LSND observed an excess of $\overline{v_e}$ events in a $\overline{v_{\mu}}$ beam which could be interpreted as oscillations at the ~1eV2.
 - Two detector would prove if this was oscillations.
- A stopped pion source (SNS/BNB) with short duty cycle and two detectors could provide definitive evidence of sterile neutrino oscillations at the ~1eV² scale.