

Ricochet: A Coherent Neutrino-Nucleus Scattering Sterile v Search

Enectali Figueroa-Feliciano Massachusetts Institute of Technology

Ricochet: A Coherent Neutrino-Nucleus Scattering Sterile v Search

Enectali Figueroa-Feliciano Massachusetts Institute of Technology

Ricochet "Proto-Collaboration"

- Columbia University
 - G. Karagiorgi, M. Shaevitz
- Duke University
 - K. Scholberg
- MIT
 - A.Anderson, E. Figueroa-Feliciano, J. Conrad, J. Formaggio, K. Palladino, J. Spitz
- Berkeley
 - M. Pyle

Ricochet

 A broad experimental program seeking to use cryogenic detectors for neutrino physics through coherent neutrino scattering

$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M_A \left(1 - \frac{M_A T}{2E_\nu^2}\right) F(q^2)^2$

- σ: Cross Section
- T: Recoil Energy
- E_{v} : Neutrino Energy
- G_F: Fermi Constant

• Qw:Weak Charge

Ν

 Z^0

- M_A: Atomic Mass
- F: Form Factor

No flavor-specific terms!!! Same rate for v_e , v_{μ} , and v_{τ}

Coherent v Scattering

- Unmeasured SM Process!
- Elastic neutrino scattering that is coherent on the entire nucleus: cross section scales as A²
- CNS cross section dominates other neutrino cross sections in the 1-50 MeV neutrino energy range
- Recoil energy is very low!

$$\frac{d\sigma}{dT} = \frac{G_F^2}{4\pi} Q_W^2 M_A \left(1 - \frac{M_A T}{2E_\nu^2}\right) F(q^2)^2$$

CNS Oscillation: A Definitive Sterile Signal

- At low energies, CNS dominates over other cross sections
- An positive oscillometry measurement with CNS is definitive proof of the sterile nature of the interaction, i.e., you don't get oscillations from NSI
- An experiment that can measure the energy spectrum and do oscillometry can do a sterile search and NSI at the same time (but beware of F(q²)²...

How to measure CNS?

• Sources:

 MCi electron capture sources: ³⁷Ar, monoenergetic, ~800 keV PRD 85, 013009 (2012)

- Reactors: I-IO MeV e.g. JHEP 12 (2005) 021
- Decay-at-rest stopped pion sources: 10-50 MeV PRD 84,013008 (2011)
- Detectors:
 - Bolometric and Dark-Matter-derived detectors with low-energy thresholds

But Wait! No one has actually seen CNS!

Ricochet @ MIT: CNS Detection

Use existing strong V source

 Exploit low-threshold detector development synergy with light-mass Dark Matter effort

New SuperCDMS Detectors: iZIP Interleaved Z-measuring Ionization and Phonon

Top and bottom surfaces contain interleaved ionization and phonon sensors

Sensors are arranged into 8 phonon channels and 4 charge channels

New SuperCDMS Detectors: iZIP 8 phonon channels, 4 charge channels

Enectali Figueroa-Feliciano - Short Baseline v - 2012

Operating at ~40 mK

New SuperCDMS Detectors: iZIP 8 phonon channels, 4 charge channels

Operating at ~40 mK

Цħ

New SuperCDMS Detectors: iZIP 8 phonon channels, 4 charge channels

Operating at ~40 mK

۱h

Some rock is nice...

Active vetomuon scintillatorPolyethyleneneutron moderationLeadshields gammasAncient Leadshields 210Pb betasPolyethyleneshields ancient leadRadiopure Copper inner canRadiopure Ge "target"

Some rock is n	ice	Tw
Active veto	muon scintillator	Tse Te Tne
Polyethylene	neutron moderation	S3se S3n S3n S3n
Lead	shields gammas	S3ne
Ancient Lead	shields ²¹⁰ Pb betas	S2se S2n S2n
Polyethylene	shields ancient lead	Sise Sie Sin Sin
Radiopure Cop	per inner can	BSS S1N S1N S1N
Radiopure Ge	'target''	Bse Be Bne Bn

Цħ

Some rock is nice...

Active veto	muon scintillator			
Polyethylene	neutron moderation			
Lead	shields gammas			
Ancient Lead	shields ²¹⁰ Pb betas			
Polyethylene	shields ancient lead			
Radiopure Copper inner can				
Radiopure Ge "target"				

Some rock is nice...

Active vetomuon scintillatorPolyethyleneneutron moderationLeadshields gammasAncient Leadshields 210Pb betasPolyethyleneshields ancient leadRadiopure Copper inner canRadiopure Ge "target"

Some rock is nice... Active veto muon scintillator Polyethylene neutron moderation Lead shields gammas Ancient Lead shields ²¹⁰Pb betas Polyethylene shields ancient lead Radiopure Copper inner can Radiopure Ge"target"

Some rock is nice... Active veto muon scintillator Polyethylene neutron moderation Lead shields gammas Ancient Lead shields ²¹⁰Pb betas Polyethylene shields ancient lead Radiopure Copper inner can Radiopure Ge"target"

Some rock is nice... Active veto muon scintillator Polyethylene neutron moderation Lead shields gammas Ancient Lead shields ²¹⁰Pb betas Polyethylene shields ancient lead Radiopure Copper inner can Radiopure Ge"target"

- Some rock is nice... Active veto muon scintillator Polyethylene neutron moderation Lead shields gammas Ancient Lead shields ²¹⁰Pb betas Polyethylene shields ancient lead Radiopure Copper inner can
- Radiopure Ge"target"

Some rock is nice... Active veto muon scintillator Polyethylene neutron moderation Lead shields gammas Ancient Lead shields ²¹⁰Pb betas Polyethylene shields ancient lead Radiopure Copper inner can Radiopure Ge"target"

To Lower the Energy Threshold: Lower T_c!

(and some optimization + higher voltage operation)

To lower the threshold, you give up some some discrimination, but if you have a source, you don't need the discrimination of CDMS

I4 eV_{RMS} Resolution For I00 eV Threshold

MIT Nuclear Reactor

- 5.5 MW Thermal Reactor
- IxI0¹⁸ V/s
- 5.2×10¹¹ v/cm²/s @
 4 meters from core
- 4 week cycle with I week refueling and maintenance

l'liī

Enectali Figue

l'lliī

Enectali Figue

l'liī

Enectali Figue

l'liī

Enectali Figue

Neutrino Flux From Reactor is High!

The rates are 10's of events per day for 6 kg detector

NSI Sensitivity!

 Non-Standard Interactions is a way to search for physics beyond the standard model by parametrizing deviations in the interaction rates between particles

 Our proposed experiment can place world-leading limits on some of these parameters

$$\frac{\partial\sigma}{\partial E_r}\left(E_{\nu}, E_r\right) = \frac{G_f^2}{\pi} M\left(1 - \frac{M_n E_r}{2E_{\nu}^2}\right) \left(\left(Zg_v^p + Ng_v^n\right) + (A+Z)\epsilon_{ee}^{uV} + (A+N)\epsilon_{ee}^{dV}\right)^2$$

Need Two Targets for Optimal NSI Sensitivity

- The important term is the difference in the N/Z ratio
- Ge and Si are the ideal choice!

The Next Step: SONGS San Onofre Nuclear Generation Station: Precision CNS Measurements

Enectali Figueroa

The Next Step: SONGS Precision CNS Measurements

CNS Sterile Search at Reactors?

- At SONGS, the size of the core is on the order of the oscillation length ---- need to model this!
- At MIT, the reactor is small, but the rate at the detector is 16 times less than at SONGS (1/r² helps) --- larger detector? near/far detectors?

On the other hand...

 Stolen from the SCRAAM section of the sterile v white paper (LLNL)

Ricochet @ DAR

A Different V Source: DAR (DAEδALUS or other)

Decay-At-Rest Source

NO electron anti-neutrino:

AEδALUS

- $\overline{v_e}$ contribution (π^- decay) is insignificant: <10⁻²%

Total Flux: 3 10¹⁵ V/s

Look For Oscillations at 10's of Meters

- At $E_v = 40$ MeV, with $\Delta m^2 = 1$ eV², L ~ 40 meters
- Realize multiple baselines by having multiple dumps
- Detection through coherent scattering arXiv: 1103.4894

Dump 2

Dump I

Detector

Detector: 100 kg SuperCDMS SNOLAB duplicate Flux at Detector: 8 10⁷ v/s/cm² from Dump 1 2 10⁷ v/s/cm² from Dump 2

Detector: 100 kg SuperCDMS SNOLAB duplicate Flux at Detector: 8 10⁷ v/s/cm² from Dump 1 2 10⁷ v/s/cm² from Dump 2

Dump 2

Magnet

Dump I

Detector

Detector: 100 kg SuperCDMS SNOLAB duplicate Flux at Detector: 8 10⁷ v/s/cm² from Dump 1 2 10⁷ v/s/cm² from Dump 2

Dump 2

Dump I

Detector

Detector: 100 kg SuperCDMS SNOLAB duplicate Flux at Detector: 8 10⁷ v/s/cm² from Dump 1 2 10⁷ v/s/cm² from Dump 2

Sensitivity 5 years, 100 kg Ge detector

Ricochet Underground

The ~ MeV v Source

- 37 Ar 5 MCi Source, 811 and 813 keV ν_e
- Not available at Walmart... made from ${}^{40}Ca$ at a fast neutron reactor $E_n > 2 \text{ MeV}$
- 30.5 day half life
- Produces only V_e and internal bremsstrahlung photons
- Size ~ 10 cm

Phy. Rev. C 73, 045805 (2006)

J. Formaggio, EFF, A. Anderson arXiv:1107.3512

The Idea

- Direct oscillometry measurement
- 500 kg of detector
- 10,000 50g pixels (use mmastronomy-derived readout)
- For $\Delta m^2 = 1 \text{ eV}^2$, $E_v = 1 \text{ MeV}$ would have an oscillation scale of L~1 meter.
- Same mass an size scale as CUORE

$$P_{\rm osc}(\nu_a \to \nu_b) = \sin^2(2\theta) \, \sin^2\left(\frac{1}{4}\right)$$

The Signal

- The rate in each pixel will go as 1/r²
- Look for Oscillations in Rate on top of the 1/r² term
- If you see these oscillations through coherent scattering, they are oscillations into a sterile neutrino!

We need a very LOW threshold!

Rate for a 5 MCi ³⁷Ar source <u>20 cm</u> away from target

600 events/kg total given the 30 day half life (at 20 cm)

To measure oscillations we need a fairly large mass!

Rate for a 5 MCi ³⁷Ar source <u>2 m</u> away from target

6 events/kg total given the 30 day half life (at 2 m)

Calorimeters to the rescue!

- Need very good resolution to have a low threshold (~3 eV FWHM for 10 eV threshold)
- Want hundreds of kilograms of mass
- X-ray microcalorimeter pixel mass ~ μg!
- Need thousand-fold increase in mass with the same energy resolution... hopeless?

Doable - at low temps!

Assumptions:

- Debye heat capacity for Si and Ge
- TES volume optimized at 15 mK (C_{TES} ~ C_{abs})
- Engineer
 Conductance to Bath (Gpb) to fixed pulse decay time to 50 ms

Doable - at low temps!

Assumptions:

- Debye heat capacity for Si and Ge
- TES volume optimized at 15 mK (C_{TES} ~ C_{abs})
- Engineer Conductance to Bath (Gpb) to fixed pulse decay time to 50 ms

Doable - at low temps!

Assumptions:

- Debye heat capacity for Si and Ge
- TES volume optimized at 15 mK (C_{TES} ~ C_{abs})
- Engineer Conductance to Bath (Gpb) to fixed pulse decay time to 50 ms

Sensitivity

- I0 eV threshold
- 500 kg target
- 5 MCi ³⁷Ar source
- Background:

 event/kg/day in
 50 eV region
 of interest

Enectali Figueroa-Feliciano - Short

Conclusions

- CNS is a completely new channel to search for physics beyond the standard model
- It is a complimentary approach to other Sterile Search proposals.
- Several options with different neutrino sources are possible.
- Cryogenic detectors can achieve the low thresholds and high energy resolution required for precision measurements of CNS.
- Exciting possibilities for the future! arxiv:1107.3512, 1202.3805

Backup Slides

Design Issues...

- With 50 g detectors a 10,000 SQUID MUX would yield 500 kg.
 - 50 ms fall times makes SQUID MUX "straightforward"
- Can one get Debye Heat Capacity at 15 mK?
 - No measurements below 50 mK!
 - TLS, surface states, impurity bands...

- Can one get α=50 at
 15 mK?
- What is the background at 10 eV? (we assume a very conservative I event/kg/day in the 10-50 eV band)
- Can one do this with athermal detectors? (we think so...)

TABLE II: Model parameters for a 50 g Si target coupled to a Mo/Au TES operated at 15 mK. The Si target is a 28 mm cube, and the TES is an 25 mm \times 2 mm film 600 nm thick deposited on the Si surface. The energy resolution for this model is 3 eV FWHM, with a 10 eV threshold. Pulses from this model are shown in Fig 4.

Parameter	Value	Units	Description
$C_{\rm Si}$	43.3	pJ/K	Debye heat capacity
C_{TES}	31.1	pJ/K	TES electron heat capacity
$G_{\rm ep}$	29.3	$\mathrm{nW/K}$	TES-Si thermal conductance
$G_{\rm pb}$	0.17	$\mathrm{nW/K}$	Si-bath thermal conductance
T_b	7.5	mK	Cold bath temperature
T_c	15	$_{\rm mK}$	TES temperature
R_o	3	$\mathrm{m}\Omega$	Quiescent TES resistance
I_o	14.1	$\mu \mathrm{A}$	Quiescent TES current
P_o	0.6	\mathbf{pW}	Quiescent TES power
$\alpha = \frac{T_c}{R_o} \frac{dR}{dT}$	50	-	TES sensitivity
τ_{o}	436.2	\mathbf{ms}	Natural decay time $C_{\rm tot}/G_{\rm pb}$
$\tau_{\rm eff}$	51.1	\mathbf{ms}	Response time with TES speedup
$\tau_{ m decay}$	29.2	\mathbf{ms}	Decay time with readout circuit
L	30	$\mu \mathrm{H}$	Readout inductance

LSND & MiniBooNE: Sterile v?

- Evidence for oscillation from $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ in both experiments
- MiniBooNE now favors oscillations at the 91.1 % confidence level
- LSND: E ~ 50 MeV, L ~ 30 m
- MB: E ~ 500 MeV, L ~ 450 m

Reactor + MiniBooNE Fits

