CROSS SECTION & FLUXES GROUP REPORT

Sam Zeller SBL Workshop

March 21, 2012

• status report on behalf of our sub-group ...

Cross Section and Flux Group

- Bonnie Fleming (Yale)
- Debbie Harris (FNAL)
- Patrick Huber (Virginia Tech)
- Chris Polly (FNAL)
- Sam Zeller (FNAL)*

* facilitator

 our task is to examine the neutrino cross sections and fluxes that are most relevant to a potential SBL program at Fermilab

- •which σ 's, Φ 's are important?
- what is the status quo right now? how will this evolve in the future?
- what add'I meas might we need to ensure definitive SBL results?

Experiments Measure v Rates

 oscillation experiments measure a neutrino interaction rate from which we get out information on oscillation parameters:

 $N(E_v) = \sigma(E_v) \times \Phi(E_v) \times \varepsilon$

- neutrino interaction cross sections and fluxes play a crucial role in the interpretation of neutrino oscillation data
- short-baseline investigations are no exception

 depends on the neutrino source and the neutrino target (P. Huber, B. Fleming)

• π^+ decay-at-rest

- example: LSND

$$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$$

- $\lesssim 50 \; {\rm MeV}$
- signal detection via inverse β decay
- depends on the neutrino source and the neutrino target (P. Huber, B. Fleming)

• π^+ decay-at-rest

- example: LSND

$$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$$

- $\lesssim 50 \; {
 m MeV}$
- signal detection via inverse $\boldsymbol{\beta}$ decay

• $\pi^{+/-}$ decay-in-flight

- example: MiniBooNE
- $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\mu}$ and same for $\overline{\nu_{\mu}}$
- 0.2-3 GeV range
- signal detection via ν -nucleus QE scattering (mostly)

 depends on the neutrino source and the neutrino target (P. Huber, B. Fleming)

Which $\sigma_{\!\nu}$ and $\Phi_{\!\nu}\mbox{'s}$ are Important?

• π^+ decay-at-rest

- example: LSND

$$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$$

- $\lesssim 50 \; {
 m MeV}$
- signal detection via inverse $\boldsymbol{\beta}$ decay

• $\pi^{+/-}$ decay-in-flight

- example: MiniBooNE
- $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu} \rightarrow \nu_{\mu}$ and same for $\overline{\nu_{\mu}}$
- 0.2-3 GeV range
- signal detection via ν -nucleus QE scattering (mostly)

• $\mu^{+/-}$ decay

- example: VLENF (see talk by Alan Bross)
- $-\overline{\nu_{\mu}} \longrightarrow \overline{\nu_{e}}, \nu_{e} \longrightarrow \nu_{e'}, \overline{\nu_{\mu}} \longrightarrow \overline{\nu_{\mu}} \text{ and similarly for } \nu_{\mu'}, \overline{\nu_{e}}$
- similar energy range and detection as $\pi\,\text{DIF}$

 depends on the neutrino source and the neutrino target (P. Huber, B. Fleming)

• π^+ decay-at-rest

- example: LSND

$$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$$

- $\lesssim 50 \; {
 m MeV}$
- signal detection via inverse $\boldsymbol{\beta}$ decay

• $\pi^{+/-}$ decay-in-flight

- example: MiniBooNE
- $\nu_{\mu} \longrightarrow \nu_{e,} \ \nu_{\mu} \longrightarrow \nu_{\mu}$ and same for $\overline{\nu_{\mu}}$
- 0.2-3 GeV range
- signal detection via ν -nucleus QE scattering (mostly)

• $\mu^{+/-}$ decay

- example: VLENF (see talk by Alan Bross)
- $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}, \nu_{e} \rightarrow \nu_{e'}, \overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}}$ and similarly for $\nu_{\mu'}, \overline{\nu_{e}}$
- similar energy range and detection as π DIF

 depends on the neutrino source and the neutrino target (P. Huber, B. Fleming)

> have narrowed our initial discussions at least to these accelerator-based options but there are also radioactive sources, reactors, β beams

Experience From Existing Experiments

• to understand the role that neutrino σ and Φ knowledge plays in ν_e appearance experiments, we have started to survey experiments who have made such measurements (adding ν_{μ} disappearance, where applicable):

"lessons learned"

proposal vs. reality

- * LSND (G. Mills)
 - π DAR example
- * MiniBooNE (C. Polly)
 - π DIF example
 - lower energy $\boldsymbol{\nu}$ beam, single detector system

* MINOS (T. Vahle)

- π DIF example
- higher energy ν beam, 2 detector set-up

π^+ DAR & LSND Experience

- well-defined v spectrum
 - - $\mu^{\scriptscriptstyle +}$ DAR flux known to 7%
 - processes with well-known σ 's to check flux normalization e.g., ν +e⁻, ¹²C(ν_{e} ,e⁻)¹²N_{g.s.}

(G. Mills)

π^+ DAR & LSND Experience

- well-defined v spectrum
 - $\pi^{+} \rightarrow \mu^{+} \nu_{\mu} \\ \stackrel{l}{\rightarrowtail} e^{+} \nu_{e} \overline{\nu}_{\mu}$
 - $\mu^{\scriptscriptstyle +}$ DAR flux known to 7%
 - processes with well-known σ 's to check flux normalization e.g., ν +e⁻, ¹²C(ν_{e} ,e⁻)¹²N_{g.s.}
- well-defined signal (IBD) $\overline{v}_e p \rightarrow e^+ n$
 - 2 fold-signature \rightarrow low ν bkgs
 - well-known σ (few-%)

π DIF & MB/MINOS Experience

12

- v spectra known to 10's of %
 - dependent on having good hadro-production constraints as input
 - needed to help break σ, Φ degeneracies
 - important that these be at same beam energies, on same target (see talks on MIPP (R. Rajendran) and N61/SHINE (D. Schmitz))

π DIF & MB/MINOS Experience

13

- v spectra known to 10's of %
 - dependent on having good hadro-production constraints as input
 - needed to help break σ, Φ degeneracies
 - important that these be at same beam energies, on same target (see talks on MIPP (R. Rajendran) and N61/SHINE (D. Schmitz))
- *v* cross sections become more complicated as move up in energy ...
 - affects both signal and background estimates
 - ν -nucleus scattering, both elastic and inelastic processes
- some (but not all) of these issues can be mitigated by having a capable near detector (T. Vahle, D. Harris)

ν Cross Sections for DIF Beams

- large uncertainties in the few-GeV energy range (compared to low and high E_v)
- lots of rich physics here
- we have been probing this region with increased precision recently ...
- ex., new results on QE scattering challenging assumptions about the size and source of nuclear effects in this energy range

Under-Appreciated Nuclear Effects

• there may be add'l nuclear dynamics present in v-nucleus scattering (i.e., effects that we have not included in our standard independent particle approach)

Martini et al., PRC **80**, 065001 (2009)

 ν can scatter off of a strongly correlated nucleon state; <u>multi-nucleon correls</u> produce an enhancement in the QE cross section (40% increase in σ_{QE} at ~1 GeV)

- seen e⁻ scattering J. Carlson et al., PRC **65**, 024002 (2002)
- over 50 theoretical papers on this topic in past year+

15

16

• how well do we reconstruct E_{v} ?

(M. Martini et al., arXiv:1202.4745;O. Lalkulich et al., arXiv: 1203.2935)

(M. Martini et al., arXiv:1202.4745)

17

- how well do we reconstruct E_v? (M. Martini et al., arXiv:1202.4745; O. Lalkulich et al., arXiv: 1203.2935)
- how well do we know the v_e/v_μ and \overline{v}/v cross sections? (presentation by Natalie Jachowicz "there is a lot we know we don't know")

(M. Martini et al., arXiv:1202.4745)

- 18
 - how well do we reconstruct E_v? (M. Martini et al., arXiv:1202.4745; O. Lalkulich et al., arXiv: 1203.2935)
- how well do we know the v_e/v_μ and \overline{v}/v cross sections? (presentation by Natalie Jachowicz "there is a lot we know we don't know")

⁽M. Martini et al., arXiv:1202.4745)

• can there be similar nuclear effects impacting background predictions - NC π^0 for $\nu_{\rm e}$ appearance, CC π for $\nu_{\rm u}$ disappearance?

 how well do we reconstruct E_v? (M. Martini et al., arXiv:1202.4745; O. Lalkulich et al., arXiv: 1203.2935)

19

• how well do we know the v_e/v_μ and \overline{v}/v cross sections? (presentation by Natalie Jachowicz "there is a lot we know we don't know")


```
(M. Martini et al., arXiv:1202.4745)
```

- can there be similar nuclear effects impacting background predictions - NC π^0 for ν_e appearance, CC π for ν_u disappearance?
- are there additional sources of NC γ backgrounds?
 - resonant radiative decays ($\Delta \rightarrow N\gamma$) but also "new" SM sources (R. Hill, PRD **84**, 017501 (2011); J. Jenkins *et al.*, PRD **80**, 053005 (2009); X. Zhang (IU))

What Might We Learn Soon?*

- 20
- additional MiniBooNE, SciBooNE, NOMAD analyses plus ...
- Booster neutrino energies
 - MicroBooNE (argon)
 - T2K near detector (carbon, water)
- NuMI neutrino energies
 - MINERvA (multiple targets, LE and ME)
 - NOvA near detector (carbon, off-axis, NDOS)
 - ICARUS (argon)

* with help from Laura Fields (Northwestern)

Future Opportunities

- σ_{v}
- MINERvA upgrades
 - H₂, D₂ targets

• SciNOvA

- fine-grained detector in NOvA off-axis beam
- VLENF (A. Bross)
 - measurement of neutrino $\sigma\sin$ a different, more well-known beam
 - first measurements of $\nu_{\rm e}$ and $\overline{\nu}_{\rm e}$ cross sections

MIPP, NA61/SHINE (R. Rajendran, D. Schmitz)
 - important for oscillations and also σ measurements

S. Zeller, SBL workshop, 03/21/12

Conclusions

- 22
 - neutrino cross sections are more complex and therefore problematic especially when scattering on nuclei and in few-GeV energy region (DIF harder than DAR)
 - need good v flux constraints (both in planning, data analysis, σ_v)
 - certainly want a capable near detector, but that may not be enough

- we are in the middle of our discussions
- if you have other ideas for us to consider or want to express an opinion or give a presentation to our sub-group, please contact us!

input is welcome!