New processes at LHC and n- \bar{n} Oscillations

Ilia Gogoladze

Bartol Research Institute Department Physics and Astronomy University of Delaware, USA

in collaboration with A. Ajaib, Y. Mimura, N. Okada and Q. Shafi Phys. Rev. D80, 125026 (2009); Phys. Lett. B686, 233 (2010) The goal is to generate n- $\bar{\mathrm{n}}$ oscillation operator

$u^c\,d^c\,d^c\,u^c\,d^c\,d^c$

integration out TeV scale vector like particles.

d=5 proton decay operators

 $qqq\ell,\ u^cd^cu^ce^c$

Symmetry to forbid $\Delta B = 1$ nucleon decay operators

 $\mathbf{q}\mathbf{u}^{\mathbf{c}}\mathbf{H}_{\mathbf{u}} + \mathbf{q}\mathbf{d}^{\mathbf{c}}\mathbf{H}_{\mathbf{d}} + \ell\mathbf{e}^{\mathbf{c}}\mathbf{H}_{\mathbf{d}} + \ell\nu^{\mathbf{c}}\mathbf{H}_{\mathbf{u}} + \mu\mathbf{H}_{\mathbf{u}}\mathbf{H}_{\mathbf{d}} + \mathbf{M}_{\mathbf{p}}\left(\frac{\mathbf{S}}{\mathbf{M}_{\mathbf{p}}}\right)^{\mathbf{m}}\nu^{\mathbf{c}}\nu^{\mathbf{c}}$

Since there are 9 fields and 6 terms, there are 3 independent U(1) symmetries in the superpotential. The three symmetries correspond to the hypercharge $U(1)_Y$, baryon and lepton number symmetries. The S field carries lepton number 2/m.

Suppose that we allow a non-renormalizable term $\mathbf{S}^n(\mathbf{u}^c d^c d^c)^2.$

$$\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline q & u^c & d^c & \ell & e^c & \nu^c & h_u & h_d & S \\ \hline -(\mathbf{n}B + \mathbf{m}L)/2 & -\frac{n}{6} & \frac{n}{6} & \frac{n}{6} & -\frac{m}{2} & \frac{m}{2} & \frac{m}{2} & 0 & 0 & -1 \\ \hline \end{array}$$

With n odd and m even, all $\Delta B = \pm 1$ operators are forbidden. n = -1 and m = 1 corresponds to the B - L symmetry .

Vector-like matter and $\Delta B = 2$ operators

The operator $u^c d^c d^c u^c d^c d^c$ induces $\Delta B = \pm 2$, $\Delta L = 0$ transitions and contributes to $\mathbf{n} - \overline{\mathbf{n}}$ oscillations. The coupling strength scales as $G_{\Delta B=2} \sim \frac{1}{M_*^5}$.

From the perturbativity and unification condition we have: (*I*) up to 4 pairs of $(5 + \overline{5})$'s, (*II*) one pair of $(10 + \overline{10})$ (*III*) the combination, $(5 + \overline{5} + 10 + \overline{10})$.

$\mbox{MSSM} + 5 + \overline{5}$ and $n - \overline{n}$ Oscillation

$$\mathbf{5} + \overline{\mathbf{5}} = L_5\left(\mathbf{1}, \mathbf{2}, -\frac{1}{2}\right) + \overline{L}_5\left(\mathbf{1}, \mathbf{2}, \frac{1}{2}\right) + \overline{D}_5\left(\overline{\mathbf{3}}, \mathbf{1}, \frac{1}{3}\right) + D_5\left(\mathbf{3}, \mathbf{1}, -\frac{1}{3}\right)$$

To generate the effective $n - \overline{n}$ oscillation operator we need have to an additional MSSM singlet field (*N*, \overline{N})

$$\mathbf{W} = \kappa_1 q q D_5 + \kappa_2 u^c d^c \overline{D}_5 + \kappa_3 D_5 d^c N + \kappa_4 D_5 d^c \overline{N} \\ + \frac{1}{2} M_N N N + M_V \left(\overline{D}_5 D_5 + \overline{L}_5 L_5 + N \overline{N} \right),$$

Note that the couplings $D_5d^c\nu^c$, $D_5u^ce^c$, and $D_5q\ell$ are forbidden when n+m is odd by the -(nB+mL)/2 symmetry, while $u^cd^c\overline{D}_5$, qqD_5 couplings are allowed.

The contribution to the $n-\overline{n}$ oscillations are:

$$G_{\mathbf{n}-\overline{\mathbf{n}}} \sim \frac{\kappa^4}{M_V} \left(\frac{B_{M_V}}{(M_V^2 + m_0^2)^2 - B_{M_V}^2} \right)^2$$
$$G_{\mathbf{n}-\overline{\mathbf{n}}} \sim (\alpha_s/4\pi)^2 \kappa^4/(m_{SUSY}^2 M_V^3)$$

$$\tau_{n-\bar{n}} \ge 0.86 \times 10^8 s \quad \Rightarrow \quad G_{\mathbf{n}-\bar{\mathbf{n}}} \le 3 \times 10^{-28} \ \mathbf{GeV}^{-5}$$

$$M_V^5 G_{\mathbf{n}-\overline{\mathbf{n}}} \leqslant \left(\frac{M_V}{1 \text{ TeV}}\right)^5 \times 3 \times 10^{-13} \quad \Rightarrow \quad \kappa_i \sim 10^{-3} - 10^{-4}$$

We can understand the strengths of these couplings through the Froggatt-Nielsen mechanism.

$\Delta B = \Delta L = 2$ operators

The $\Delta B = \Delta L = 2$ operators (typically $(qqq\ell)^2$) are responsible for $\mathbf{H} - \overline{\mathbf{H}}$ (hydrogen-anti hydrogen) oscillations, and double nucleon decays (e.g. $pp \rightarrow e^+e^+$) $\tau_{pp} \gtrsim 10^{30}$ years. This is interpreted as $\tau_{\mathbf{H}-\overline{\mathbf{H}}} > 10^{17}$ years.

If there are vector-like matter fields $5 + \overline{5} + 10 + \overline{10}$, it is possible to generate $\Delta B = \Delta L = 2$ operators.

Anomalous $U(1)_A$ Flavor Symmetry and $n - \overline{n}$ Oscillations

$$\begin{split} n_i^q &= (4-\alpha,2,0), \ n_i^u = (4-\alpha,2,0), \ n_i^d = (2,1,1), \\ n_i^\ell &= (2,1,1), \ n_i^e = (4-\alpha,2,0), \ n_i^\nu = (\gamma+1,\gamma,\gamma), \end{split}$$

where α is 0 or 1.

$$\frac{1}{M_V^5} \left(\frac{S}{M_{st}}\right)^{n+16-2\alpha} u^c d^c d^c u^c d^c d^c$$

Implications for LHC

$$W = \left(\frac{S}{M_{st}}\right)^{n_i^q + n_j^q + \frac{X_D}{2}} D_5 q_i q_j + \left(\frac{S}{M_{st}}\right)^{n_i^u + n_j^d - \frac{X_D}{2}} \overline{D}_5 u_i^c d_j^c.$$

Ilia Gogoladze New processes at LHC and n-n Oscillations

The differential cross sections for tb (solid line), $\bar{t}b$ (dotted line) production versus the invariant mass of the final states. The left peak corresponds to $M_D = 600$ GeV and the right one to $M_D = 1$ TeV. The dashed line is the standard model $t\bar{t}$ background. Here $\kappa = 0.3$

Higgs mass and low scale vector like matter

Blue line - the MSSM with $M_S = 2$ TeV and $A_t = \sqrt{6}M_S$ and red line corresponds – MSSM + (10 + $\overline{10}$) with $M_S = 200$ GeV and $M_V=1$ TeV

see, K. S. Babu, I.G., M. U. Rehman, Q. Shafi, Phys. Rev. D78, 055017 (2008)

Summary

- We explore extensions of the MSSM in which TeV scale vector-like multiplets can mediate observable $n-\overline{n}$ oscillations.
- In this scenario we can have vector-like diquark with mass around a TeV scale.
- For plausible values of the diquark-quark-quark couplings can be produced at the LHC and detected through its decay into a top quark and a jet.