Muon Physics Summary

Graham Kribs

50+ years of heroic measurements have precisely characterized flavor sector of SM (masses & mixings of q & I).

Yet, we are no closer to an "origin" or "theory" of flavor.

1 event* would rock our world!

e.g. μ -> e transition

e.g. direct detection nuclear recoil

*(in principle)

Lepton Flavor Physics: The Big Picture

Muon flavor-conserving puzzles

Muon (g-2) Anomaly

$$a_{\mu}=(g_{\mu}-2)/2$$

 $a_{\mu}(\text{Expt}) = 116592089(54)(33) \times 10^{-11}$ $a_{\mu}(\text{SM}) = 116591802(42)(26)(02) \times 10^{-11}$ BNL E821 (2006) $\Rightarrow \Delta a_{\mu} = 287(80) \times 10^{-11}$ 3.6 σ discrepancy 10th orderr QED contributions now fully evaluated (T. Aoyama et. al., 2012)

Major theory uncertainty in hadronic vacuum polarization

 $a_{\mu}(\text{HVP}) = (692.3 \pm 4.2) \times 10^{-10}$ = (701.5 ± 4.7) × 10⁻¹⁰ ($\tau \rightarrow$ hadrons data)

 $a_{\mu}(\text{HLbL}) = 105(26) \times 10^{-11}$

Babu

(au
ightarrow hat

Models

- See INT workshop (Seattle, Feb. 2011), http://www.int.washington.edu/PROGRAMS/11-47w/
- Low energy effective theories, χPT , ...
- Operator product expansion constraints
- holographic QCD (extra-dimensions)
- Schwinger-Dyson (out-lier)
- Glasgow Consensus, $a_{\mu}(\mathrm{HLbL}) = 10.5 \pm 2.6 \times 10^{-10}$
- $\pi \rightarrow \gamma^* \gamma$ (KLOE, lattice, ...)
- Model errors not systematically improveable

Blum 2011

Preliminary Lattice Calculations for HLbL

$a_{\mu}(\text{HLbL})$ in 2+1f lattice QCD+QED (PRELIMINARY)

- $a_{\mu}(\text{HLbL}) = (-15.7 \pm 2.3) \times 10^{-5}$ (lowest non-zero mom, e = 1)
- HLBL amplitude depends strongly on m_{μ} (m_{μ}^2 in models)
- ▶ Magnitude 5-10 times bigger, sign opposite from models
- models not expected to be accurate in this regime
- Check subtraction is working by varying e = 0.84, 1.19
 - \blacktriangleright HLbL amplitude ($\sim e^4)$ changes by \sim 0.5 and 2 \checkmark
 - \blacktriangleright while unsubtracted amplitude stays the same \checkmark

$a_{\mu}(\text{HLbL})$ in 2+1f lattice QCD+QED (PRELIMINARY)

- Easy to lower muon mass (muon line is cheap)
- Try $m_\mu \approx 190$ MeV
- $a_{\mu}(\text{HLbL}) = (-2.2 \pm 0.8) \times 10^{-5}$ (lowest non-zero mom, e = 1). Right direction...

a_u (HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

HLbL systematic error

HLbL systematics

Signal may be emerging in the model ballpark:

- $F_2(0.18 \text{ GeV}^2) = (0.142 \pm 0.067) \times \left(\frac{\alpha}{\pi}\right)^3$
- $F_2(0.11 \text{ GeV}^2) = (0.038 \pm 0.095) \times \left(\frac{\alpha}{\pi}\right)^3$
- $a_{\mu}(\text{HLbL/model}) = (0.084 \pm 0.020) \times \left(\frac{\alpha}{\pi}\right)^3$

Lattice size 24³, m_{π} = 329 MeV, $m_{\mu} \approx$ 190 MeV model value/error is "Glasgow Consensus" _(arXiv:0901.0306 [hep-ph])

"Disconnected" diagrams (quark loops connected by gluons) not calculated yet (not suppressed).

Several possibilities,

- 1. Use multiple valence quark loops (qQED)
- 2. Re-weight in α (T. Ishikawa) or dynamical QED in HMC
- 3. "A source" (see Izubuchi's talk) (no subtraction)

- Need to address
 - Finite volume
 - $q^2 \rightarrow 0$ exptrap
- $m_q \rightarrow m_{q, \, \text{phys}}$
- $\blacktriangleright \ m_\mu \to m_{\mu,\,{\rm phys}}$
- excited states/ "around the world" effects
- ► a → 0
- QED renormalization
- • •

Blum 2012

Summary/Outlook

- Demanding, but straightforward calculation
- Early HLbL lattice calculation encouraging
- Intermediate lattice calculations to check models (four-point, $\pi \rightarrow \gamma^* \gamma$, chiral susceptibility, ...)
- Optimistic lattice+models+expt can reach 10% goal in \sim 5 years (INT WS on HLbL, Feb. 2011)
- White papers, prospects for lattice QCD:
 - USQCD white-paper
 - (http://www.usqcd.org/collaboration.html)
 - Fundamental physics at the Intensity Frontier white-paper (arXiv:1205.2671 [hep-ex])
- Expected precision
 - ► E989: 0.14 PPM (factor of 3-4 better than E821)
 - ► SM theory, HVP: 0.3% (factor of 2)
 - ► SM theory, HLbL 10% or better (?)
 - ► Same central values, a_{μ} discrepancy \rightarrow 5-8 σ_{\neg} , a_{\downarrow} , $a_$

Blum 2012

In situ measurement in E989 FNAL g-2

B. Casey - FNAL

Polly (IFW 2011)

J-PARC Muon EDM beyond 10⁻²¹

Parasitic EDM has intrinsic limitation at ~ 10^{-21-22}

To go below this : use so-called "Frozen Spin" technique

- judicious E and B to cancel magnetic moment contribution

$$\omega = -\frac{e}{m} \left[a_{\mu}\vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Radial E-field without any residual vertical field.

LOI to J-PARC in 2003 to use dedicated 11m FFAG ring with sensitivity @ 10⁻²⁴

Proof of principle proposed at PSI (2006-2010) with 42cm ring with sensitivity @ 5x10⁻²³ - challenging

J-PARC PAC / IPNS favours nEDM (E33) experiment over μ EDM although nEDM has not yet got stage-1 approval.

Lancaster

Proton Charge Radius Puzzle

refersto:recid:860749

Brief format \$

latest first ‡ desc. ‡ - or rank by - ‡ 100 results ‡

http://inspirehep.net/search?ln=en&ln=en&p=refersto%3Arecid%3A860749&of=hb&action_search=Search&sf=&so=d&rm=&rg=100&sc=0

Page 1 of 12

R. Bernstein and G. Kribs PXPS 2012

50. High Precision Measur	(
$\log O^2$		
X Zhan (MIT & Argonne, PHV	,	
(Argonne PHY) W Bertozzi (1	
(Virginia U.), S. Choi (Seoul N	:	
Published in Phys.Lett. B705		
e-Print: arXiv:1102.0318 [nuc		
References BibTeX I	_	
Abstract and Postscript		
Detailed record - Cited by 20 r	0	
51. Natural Resolution of t		
G.A. Miller (Washington U., Se	8	
2011. 6 pp.		e-Print: arXiv
Published in Phys.Rev. A8		Refere
e-Print: arXiv:1101.4073 [r		Abstra
References BibTe>		Detailed reco
Abstract and Postsc		
Detailed record - Cited by 1	56.	
		nages 4 figur
52. Ab Initio calculation		Published in I
Evgeny Epelbaum, Hermar		e-Print: arXiv
(BUILL U., HISKP & BUILL U Published in Phys Pay Lat		Refere
e-Print: arXiv:1101 2547 [r		<u>Abstra</u>
		Detailed reco
Abstract and Postsc	57	Nuclean
Detailed record - Cited by 2	57.	Nucleon s
Detailed record - Cited by 2		PBC and LK
53. Muonic hydrogen an		collaboration)
David Tucker-Smith (Williar		Published in I
U.). Nov 2010, 4 pp.		Talk given at
Published in Phys.Rev. D8		e-Print: arXiv
e-Print: arXiv:1011.4922 [h		Refere
References BibTe>		Abstra
Abstract and Postsc		Detailed reco
Detailed record - Cited by S	58.	Spectrosc
54 Proton also anomaly		Joerg Jaecke
54. Proton size anomaly		Contributed to
Vernon Barger (Wisconsin		e-Print: arXiv

refer

 Q^2

Vernon Barger (Wisconsin Wisconsin U., Madison), W Madison). Nov 2010. 4 pp. Published in Phys.Rev.Let e-Print: arXiv:1011.3519 [h

References | BibTe> Abstract and Postsc Detailed record - Cited by 1

55. Pionic deuterium.

httr

Th. Strauch (Julich, Forsch Buhler (Stefan Meyer Inst. (Julich, Forschungszentrum Lab. Kastler Brossel) et al. Published in Eur.Phys.J. A

A De Ruiula Published in I e-Print: arXiv Refere Abstra

Detailed reco

Refere

Abstra

Abstra

Detailed reco

Philippe Brax

Published in I

e-Print: arXiv Refere

Detailed recor

60. QED confr

59. Atomic Pre

61. Pure boun

the proton radius puzzle

- inferred from muonic H
- inferred from electronic H
- extraction from e p, e n scattering, $\pi\pi NN$ data (this talk)
- previous extractions from e p scattering (as tabulated in PDG)

	(g-2)µ	re ^p
significance	3.6σ e+e- 2.4σ τ	5σ H spectroscopy Iσ - 5σ ep scattering
hadronic uncertainties	hadronic vac. pol, light-by-light	charge radius, two-photon exchange
new physics/SUSY interpretation	≈√ ?	?

The proton radius is still a puzzle.

Hill

Muon LFV

Muon LFV history

History of $\mu \to e\gamma$, $\mu N \to eN$, and $\mu \to 3e$

Bernstein

Muon LFV for Dummies (like me)

Bernstein

R. Bernstein and G. Kribs PXPS 2012

Bernstein

Muon LFV

Where are we now?

Summary $\rightarrow e \gamma @ MEG$

- * MEG searches for $\mu^+ \rightarrow e^+ \gamma$ with an unprecedented sensitivity.
- * Five times tighter upper limit on $\mathcal{B}(\mu^+ \rightarrow e^+ \gamma)$ was set with data 2009+2010.
 - * New limit: $\mathcal{B}(\mu^+ \rightarrow e^+ \gamma) < 2.4 \times 10^{-12} (90\% \text{ C.L.})$
- MEG will be exploring the branching ratio region of O(10⁻¹³) with data 2011 and 2012.
- * Other physics analyses besides $\mu^+ \rightarrow e^+ \gamma$ search analysis are also in progress.
- R&D work on MEG upgrade aiming at sensitivity of O(10⁻¹⁴) is in progress.

Ootani (Moriond 2012)

μ -> e conversion @ SINDRUM II

Van der Schaaf (NOON03 2003)

$\mu \rightarrow 3e @ SINDRUM II$

 Current <1.0e-12 at 90% CL: Bellgardt et al., Nuclear Physics B 299 (1998)

Muon LFV

What could be out there?

Target Nuclei Dependence

Cirigliano, Kitano, Koike, Tuzon (0904.0957)

 $J_{(k)}^{V\mu} = \bar{N}\gamma^{\mu}\tau_{k}N, \quad J_{(k)}^{A\mu} = \bar{N}\gamma^{\mu}\gamma_{5}\tau_{k}N, \qquad J_{(k)}^{\mu\nu} = \bar{N}\sigma^{\mu\nu}\tau_{k}N \quad N = \{p, n\}$ $Co_{J_{(k)}}^{S} = \bar{N}\tau_{k}N, \quad J_{(k)}^{P} = \bar{N}\gamma_{5}\tau_{k}N \quad \text{or } N = \{p, n\}$

For coherent μ -e co $S_{\alpha} = \sum_{f} \left(\frac{q_{f}}{m_{\mu}}\right)^{2} \sum_{JM} |\langle f | \widehat{T}_{\alpha}^{JM} | i \rangle|^{2}$, $\alpha = S, V, A$ eeded (the axial and pseudoscalar nucleon functions) couple to the nuclear spin and for J=0 nuclei they contribute only to incoherent transitions).

New limits for lepton-flavor violation from the $\mu^- \rightarrow e^-$ conversion in ²⁷Al

Nuclear structure calculations have been performed by using:

- (i) Shell Model,
- (ii) Various QRPA methods
- (iii) Relativistic Fermi Gas Model (use of the Lindhard function)

The results, in some important channels, are model dependent

 $T^{JM} = \sum \beta^{\tau} f^{\tau} O^{JM}(\tau)$

Mechanism	$S_A(\mathrm{coh})$	$S_V(\mathrm{coh})$	$M^2_{ m coh}$	$S_A(inc)$	$S_V(inc)$	$M_{ m inc}^2$	$M_{\rm tot}^2$	$\eta(\%)$
γ exchange	0.000	64.60	64.60	0.000	1.54	1.54	66.13	97.7
W exchange	0.002	512.10	512.11	2.94	10.42	19.26	531.36	96.4
SUSY Z exchange	6.71	392.36	412.47	116.72	10.61	360.76	773.23	53.3

Kosmas

 $\eta = \Gamma_{\rm coh}(\mu \rightarrow e^-) / \Gamma_{\rm tot}(\mu \rightarrow e^-) \approx M_{\rm coh}^2 / M_{\rm tot}^2$

RS Model with Anarchic Flavor

Anarchic Flavor in RS

For an interesting model, we want...

 \mathbf{A}

- Y^{*}_{ij} = Y_{*} ⊕^{ij}_{ij} is an ancharic matrices with O(1) numbers.
 ⇒ The mass hierarchy is determined by the wave function localization.
- M_{kk} is not too heavy. \Rightarrow KK modes can be seen at LHC.

Tsai

Supersymmetry with an R-symmetry

MSSM

m _{ij²}	m_{ij}^2	m_{ij}^2	m _{ij²}	\mathbf{R}	III ²	
					m 2	
m_{ij}^{2}	m_{ij}^{2}	m_{ij}^{2}	m_{ij}^{2}	m ²	m_{ij}^{2}	
m_{ij}^{2}	m_{ij}^2	m_{ij}^2	m ²	m_{ij}^2	m_{ij}^2	
m_{ij}^{2}	m_{ij}^{2}	m ²	m_{ij}^{2}	m_{ij}^{2}	m_{ij}^2	
m_{ij}^{2}	m ²	m_{ij}^2	m_{ij}^2	m_{ij}^2	m_{ij}^2	
m ²	m_{ij}^{2}	m_{ij}^{2}	m_{ij}^{2}	m_{ij}^{2}	m_{ij}^2	

 $m^2 |m_{ij}^2|$ 0 0 0 0 m_{ij}^2 m² 0 0 0 0 m^2 0 0 0

MRSSM

0

0

 $m^2 m_{ij}^2$

 m_{ij}^2 m²

0

R

0

0

0

 m^2

R

0 0 Friday, June 15, 2012 0 0 0 0 0 forbidden in 0 0 **MRSSM**

Current limits on m_{ij}^2 is much more relaxed, potentially solving the lepton flavor problem

Project X will be able to determine whether the MRSSM is a solution

R

Fri

Fok

Neutrino Mass from Leptoquarks

• Two-loop neutrino mass model via leptoquarks

- Predictions θ_{13} , mass hierarchy
- Low-energy phenomena $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, μe conversion in nuclei, muon g 2

Split Fermions in Extra Dimensions

- Flavor Problem \Leftrightarrow Geometry in extra dimension
- Split fermion model as an example:
 - Linear displacement between left-handed and right-handed fermions in the fifth dimension becomes exponentially suppressed 4D Yukawa.
 - A realistic configuration to fit quark masses and mixings

• tree-level LFV processes will be much larger than the loop induced ones, e.g. $Br(\mu \rightarrow 3e) \gg Br(\mu \rightarrow e\gamma)$.

R. Bernstein and G. Kribs PXPS 2012

Chang

µ -> 3e

BR($\mu -> 3e$) $\approx 10^{-13}$

Muon LFV

Where should we be going?

Lancaster

$\mu^+ \rightarrow 3e \text{ at PSI: } 10^{-15} to 10^{-16}$

- Current <1.0e-12 at 90% CL: Bellgardt et al., Nuclear Physics B 299 (1998)
- LOI to PSI:
 - Stopped $\mu^+ \text{beam}$ with SciFi and Pixels
- $\mu^+ \rightarrow 3e$ shares much with $\mu^+ \rightarrow e\gamma$:
 - Accidentals and Resolution
 - Here, from $\mu^+ \rightarrow 3ev\overline{\nu}$ at BR= (3.4e-05) overlapping other decays
 - Bhabha scattering of positrons from regular Michel decay can yield a pair in combination with another decay
- Need high resolution tracker
 - Innovative pixel tracker
 - LOI at PSI: <u>A novel experiment searching for</u> <u>the lepton flavour violating decay μ</u> <u>→ eee</u>

$\mu\text{->}$ e γ with converted γ

Fritz DeJongh

- Goal: Path to 10⁻¹⁶ sensitivity using
 - Intense stopped muons beams from Project-X
 - Monolithic pixel detectors
 - Time of flight
 - Calorimetry?
- Outline:
 - Conceptual design based on resolution estimates
 - Some initial simulation results
 - Can we move converter closer to muon stopping target?
 - To the limit: Use internal conversions?
 - Comments on μ -> eee
 - What's next toward Snowmass?

- COMET : stage-1 approval with stage-2 expected with TDR in 2012. CDR BR sensitivity 6 x 10⁻¹⁷ in 2021.
- **2. Phase-I COMET** : Beamline+1st 90⁰ for COMET has been recommended for inclusion in KEK budget. Sensitivity O(100) better than SINDRUM.
- DeeMe : stage-1 approval from muon PAC but further R&D requested from IPNS PAC Would run in MLF without MR in H- line. Sensitivity O(100) better than SINDRUM.

Lancaster

Mu2e @ Fermilab

Mu2e Apparatus

R. Bernstein and G. Kribs PXPS 2012

Hitlin

Project X Advantages for µN -> eN

- Beam Power:
 - Aside from raw statistics, lets us solve other problems
- Time Structure
 - A problem in Mu2e/Booster Era is radiative pion capture
 - Too detailed for this talk, but "wait" for pions to decay
 - Beam at Mu2e is 200 nsec wide and that yields background since you can't wait forever!
 - PX can give O(10 nsec) beam widths, a huge improvement!
- Lower Energy
 - Another problem in Mu2e/Booster is antiproton production
 - Antiprotons wander down beamline (same charge as μ⁻), annhihilate, and make pions -> radiative pion capture
 - We're on a threshold for pbars, so slightly lower energy yields huge reduction
- Can tradeoff the above to optimize sensitivity

An R&D plan

- It may be possible for the Mu2e calorimeter (tracker ???) to cope with initial Project X rates by shortening the signal integration time
 - It is straightforward to study the effect on energy resolution
- At 50x, it is likely that a new approach will be necessary
 - Something completely different
 - A crystal with a shorter scintillation decay time
 - There are candidates: BaF₂, LABr₃(Ce), LaCl₃(Ce),
 - Before these crystals can be employed in an HEP experiment, further R&D will be necessary
 - Crystals
 - » Size
 - » Production efficiency
 - » Impurities radiation hardness
 - » Uniformity
 - Readout devices
 - » Spectral response
 - » Size
 - » Radiation hardness

Summary

- * FC: g-2, μ EDM, R_p, muonium
 FV: μN -> eN; μ->3e; μ -> eγ; μ⁻N -> e⁺N',
- * μ -> e transition probes lepton flavor sector 200 -> 1000 TeV now; experiments within \approx 5 years can achieve 3000 -> 7000 TeV; PX would exceed 10⁴ TeV
- * Rich set of experiments (μ N -> eN; μ ->3e; μ -> e γ) give complementary opportunities for probing new CLFV physics
- * Observation of μ -> e transition would be huge! Many opportunities for pinning down origin of CLFV (experiments, targets, etc.)