A Neutron - AntiNeutron Oscillation Experiment at Project X ?

Geoff Greene

University of Tennessee / Oak Ridge National Laboratory

Project X Science Meeting, FNAL June 2012

3 Questions

1. How much better well could we do at Project X?

2. What would it cost?

3. Is it worth doing?

The 1989-91 ILL Experiment was thoughtfully done (Dirk Dubbers - Monday)

1. How much better well could we do at Project X?

Possible improvements in sensitivity $FOM = Nt^2$

- Dedicated source
- Efficient coupling to experiment
- Slower Neutrons ("Cold", "Very Cold") (David Baxter Monday) (Gunter Muhrer - Monday)
- Focusing neutrons by efficient ("high-m") mirror reflection

(Hiro Shimizu - Monday)

Maintain low background

(Sunanda Banneree- Monday)

Neutron manipulation by gravity ?

(Yuri Kamyshkov - Monday)

<u>The Institut Laue Langevin High Flux Reactor is</u> <u>optimized to serve many neutron beamlines</u>

The High Flux neutron Source at the ILL

Figure courtesy ILL

<u>At ~1.4 GeV, each incident proton liberates ~60 neutrons</u>

Typical neutron energy 10's - 100 MeV

Dedicated Spallation Target with Cold/Very Cold Neutron moderator

Notional Scheme of Project X Experiment is Simple

No need for curved input guide for background reduction due to pulsed nature of spallation source

There may be gains if neutron flight path is vertical

Need detailed Cost/Benefit Analysis

Phase shift leads to Index of Refraction

At low energies S-wave scattering dominates, phase shift is given by $\cot(\delta) = \frac{-1}{kb_{coh}}$

For most nuclear well depths and well sizes, it is unlikely to obtain a positive coherent scattering length:

$$n = \sqrt{1 - \frac{N\lambda^2 b_{coh}}{\pi}}$$

Index of refraction is therefore <1 for most nuclei *

*In the vicinity of A~50 (V, Ti, Mn) nuclear sizes are such that b_{coh}<1 and thus n>1

Neutrons will undergo complete "external" reflection from a polished surface for most materials

Ni or ⁵⁸Ni are particularly useful as a neutron mirror material

 $\theta_{crit}(Ni) \approx 1.7 \times 10^{-3} / \lambda(Angstrom)$

For most neutron beams this means $\theta_{crit} \leq 10^{-2}$

Reflectivity of Neutron Mirror

A Simple Neutron Mirror has Essentially Unit Reflectivity Up to a Maximum Critical Angle

A Multilayer can add "Psuedo" Bragg Peak

Additional Multilayers with different "d" add More Peaks

The "Supermirror" Extends the "Effective" $\theta_{critical}$

Commercial Supermirror Neutron Guides are Available With m ≈ 3 - 4

Gain in intensity goes as m²

Possible improvements in sensitivity (Nt²) Intrinsic source brightness (assume 1MW) x 1/4 x 2 •Colder moderator (gain goes as λ^2) Coupling to experiment x 2 •Larger moderator face (30x30cm² vs 6x12cm²) x 12 •Use "high-m" neutron reflector (assume m=6) x 36 • Longer experiment (200m vs 76m gain $\sim L^2$) x 7

Estimated Sensitivity Gain ~3×10³

Take away message:	A substantial improvement is	possible with only
	straightforward extension of	existing technology

Major Cost Drivers:

- High Power Target/Moderator system (Tony Gabriel - Monday)
- Larger Area of "high-m" neutron mirrors
- Large volume, high vacuum flight path
- Large volume magnetic shields (Mike Snow - Monday)

Major Cost Drivers:

- High Power Target/Moderator system (Tony Gabriel - Monday)
- Larger Area of "high-m" neutron mirrors
- Large volume, high vacuum flight path
- Large volume magnetic shields (*Mike Snow - Monday*)

Log (Estimated Cost in M) = 8 ± 0.3 *

*represents a total WAG by the presenter and does not necessarily reflect the views of U of TN, ORNL, DOE,...or my collaborators.

3 Questions

- 1. How much better well could we do at Project X? MUCH BETTER... BUT NEED DETAILED SIMULATIONS
- 2. What would it cost? NEED PRELIMINARY ENGINEERING
- 3. Is it worth doing? NEED ANSWERS TO 1.& 2. PLUS THEORY

How to prepare for Snowmass 2013

- 1. MCNP/Thermal modeling of the source design & neutron optics simulation (e.g. Mcstass).
- 2. Conceptual Engineering Design & Preliminary cost estimate - need FNAL engineers
- 3. Thoughtful theoretical analysis of discovery potential given experimental reach and cost