## ND-LAr Analysis: Status and Outlook

**Andrew Mastbaum & Pedro Ochoa Ricoux** 

ND Consortium Management Board Meeting January 19, 2022







### **Outline**

- Analysis goals & requirements
- Overview of analysis tools
  - DUNE ND Software
  - ND-LAr Simulation
  - ND-LAr Reconstruction
  - Module-0 Analysis
  - ND-LAr Analysis
- Main targets and rough schedule
- Conclusions



### **Overall Goals**

- Support broader DUNE physics analysis efforts, including demonstrating ND deliverables
- Develop an automated reconstruction that reliably and optimally extracts information from ND-LAr interactions
- Incorporate up-to-date understanding of detector design & performance



- Provide actionable feedback for detector design considerations
- Assess whether we are on a path to meet ND-LAr performance requirements





### **Software Chain Overview**



- Sharing common tools with other ND detectors, coordinated via the ND Sim/Reco group
- Custom detector simulation purpose-built for pixel-readout LArTPCs and large photodetector coverage
- Machine-Learning (ML) and Pandora reconstructions being pursued in parallel
- Analysis files based on parametric reconstruction or reconstruction of Geant4 simulation to support high-level analysis in parallel with ongoing end-to-end tool development





- Novel drift & response simulation for pixelated LArTPCs has been developed
- Important features:
  - 10,000x acceleration with GPUs
  - Outputs in LArPix data format
  - Incorporates MC truth matching
  - Allows to simulate prototypes or ND-LAr
- Recent development highlights:
  - Support for unique channel electronics thresholds
  - Improved charge and far-field current response models
    - Tuning from Module-0 data/MC comparisons
  - Full spill simulation (next slides)



























- Light simulation based on photon propagation model:
  - Models photon production, recombination using Geant4 output
  - Visibility + timing maps (lookup tables) built from a dedicated Geant4 simulation
- Integrated into larnd-sim, but some aspects missing:
  - Full SiPM + electronics response
  - Output in data format
- Essential to study Q/L matching, interaction pileup









### **ND-LAr Reconstruction**

#### **ML-Based Event Reconstruction**

- ML-Reco: Deep Learning-based Reco for ND-LAr
  - Toolkit developed by SLAC and used in other LArTPC experiments, adapted to native 3D readout of ND-LAr
  - A complete end-to-end LArTPC reco chain
- Operates on voxelized Geant4-level edep-sim output



- Work well underway to input larnd-sim format (S. Fogarty, CSU & Z. Hulcher, SLAC)
- CAF (analysis tree) output available, now in the validation stage
  - Small full spill samples
  - Bringing more people into validation/ development
  - Gateway to high-level analyses



#### Pileup beam MC event





J. Wolcott, Tufts









### **ND-LAr Reconstruction**

#### **ML-Based Event Reconstruction**





- Can already do basic studies with CAFs
  - Example: proof-of-principle  $\nu_{\mu}$  CC energy estimator (left plots)
  - Example: selection efficiency of  $\pi^0$  and  $\nu_e$  CC events (bottom table)
- Efforts underway to:
  - Streamline "plumbing" for productions
  - Identify & fix bugs (e.g. shower grouping)
  - Understand what variables to add

R. Mandujano, UCI

|                  | $\pi^0$ | $\nu_e CC$ |
|------------------|---------|------------|
| Front Vertex Cut | 90.56%  | 94.81%     |
| Back Vertex Cut  | 85.54%  | 83.77%     |

(as expected, performance degrades near back end)







## **ND-LAr Reconstruction**

#### Pandora Event Reconstruction

- Pandora pattern recognition being applied to ND-LAr in parallel
  - Mature, widely used set of reco tools in wire-based LArTPCs including DUNE FD
- Also starts with edep-sim input
- Currently works in 2D projections to leverage existing toolchain
  - See reasonable performance with MC single particles & neutrino events
  - Plan to:
    - Update 2D algorithms for ND
    - Develop 3D algorithms















## **Module-0 Analysis**

#### **Detector Performance**



- Joint effort of many (N>10) consortium institutions
- Channel-level analysis of charge (LArPix) and light (ArCLight, LCM) systems (also provides MC tuning)
- Track-level studies electron lifetime, field uniformity, calorimetry
- Validations of key ND-LAr design requirements:
  - Noise < 1k e- enc,
  - >92% active ch, no cold failures
  - Efficiency, triggering, timing, purity, resistive field cage shaping uniformity, ...



Time Dependence of Electron Lifetime







## **Module-0 Analysis**

#### **Publication Status**

- Paper dedicated to Module-0
  - Contains overview, performance of each system, and measurements with cosmics
  - Targets JINST
  - 40 pages, 44 figures
- First draft ready, but:
  - Some sections still need work
  - Different styles across manuscript
- Andy and Pedro trying to fix everything, but progress has been slow
  - Potential solution #0: keep going and hopefully find enough time (or additional help)
  - Potential solution #1: drop sections that are insufficient
  - Potential solution #2: write a short 5-10 page paper with highlights instead

| 12 | C | onter                                        | nts                                 |    |  |  |  |  |
|----|---|----------------------------------------------|-------------------------------------|----|--|--|--|--|
| 13 | 1 | Overview                                     |                                     |    |  |  |  |  |
| 14 |   | 1.1                                          | LArPix Charge Readout System        | 3  |  |  |  |  |
| 15 |   | 1.2                                          | Light Readout Systems               | 4  |  |  |  |  |
| 16 |   | 1.3                                          | Detector Configuration              | 6  |  |  |  |  |
| 17 | 2 | Charge Readout Performance                   |                                     |    |  |  |  |  |
| 18 | 3 | Light readout performance                    |                                     |    |  |  |  |  |
| 19 |   | 3.1                                          | Calibration                         | 17 |  |  |  |  |
| 20 |   | 3.2                                          | Time resolution                     | 18 |  |  |  |  |
| 21 |   | 3.3                                          | Photon detection efficiency         | 19 |  |  |  |  |
| 22 | 4 | Measurements with Cosmic Ray Data Samples 20 |                                     |    |  |  |  |  |
| 23 |   | 4.1                                          | Track Reconstruction                | 20 |  |  |  |  |
| 24 |   | 4.2                                          | Electron lifetime                   | 21 |  |  |  |  |
| 25 |   | 4.3                                          | Electric field uniformity           | 23 |  |  |  |  |
| 26 |   | 4.4                                          | Calorimetry                         | 25 |  |  |  |  |
| 27 |   | 4.5                                          | Charge-light matching               | 26 |  |  |  |  |
| 28 |   | 4.6                                          | Charge/light yield anti-correlation | 28 |  |  |  |  |
| 29 |   | 4.7                                          | Cosmic ray tracks                   | 32 |  |  |  |  |
| 30 |   | 4.8                                          | Michel electrons                    | 34 |  |  |  |  |
| 31 | 5 | 5 Conclusions 3                              |                                     |    |  |  |  |  |

#### 32 1 Overview

The Module-0 demonstrator is the first ton-scale prototype of the DUNE Liquid Argon Near Detector (ND-LAr) design. That detector will consist of a 7×5 array of 1×1×3 m³ detector modules [1] based on the ArgonCube detector concept [2], each housing two 50 cm drift Time Projection Chambers (TPCs) with roughly 30% optical detector coverage. Module-0, with dimensions 0.7×0.7×1.4 m³, represents the first fully-integrated prototype of the ND-LAr module design, bringing together the LArPix [3] pixelated 3D charge readout, advanced ArCLight [4] and Light Collection Module (LCM) [5] optical detectors, and field shaping provided by a low-profile resistive shell [6]. The prototype also tested the charge and light system control interfaces, data acquisition, triggering, and timing. Module-0 is the first of four functionally identical modules which together will comprise an upcoming 2×2 ND-LAr prototype, known as ProtoDUNE-ND. Following construction and initial tests with cosmic ray samples, this prototype will be deployed underground in the NuMI

\_ 1 \_







## **ND-LAr Physics Analysis**

- Comprehensive suite of ND-LAr physics analyses performed using realistic pseudo-reconstruction for the ND CDR and FD TDR
  - e.g. LBL oscillation physics
- Revisit with updated detector modeling, full simulation and reconstruction tools
  - Geometry + Geant4 captures detector details, e.g. reconstruction across inactive regions and detectors
  - Most notably, effort towards next-generation LBL sensitivities is ramping up (next slides)



Muon and hadron acceptance, C. Marshall (Rochester)



Pileup & modularity, B. Russell (LBL)





# ND-LAr Physics Analysis Targets

- Baseline goal: assess reconstruction performance relative to ND-LAr requirements and pseudo-reconstruction parameters
  - Already in progress: each parameter has a name next to it
  - Shooting for ~March 2022 for first pass
  - Challenges:
    - Some tools not fully ready, steep learning curve in some cases, and general busyness

| Muon energy resolution             | ND-LAr physics | 5%                              | Contained, >1 m          | LBL CAF          |
|------------------------------------|----------------|---------------------------------|--------------------------|------------------|
| Muon angular resolution            | ND-LAr physics |                                 | Analytic smearing        | LBL CAF          |
| Muon energy scale                  | ND-LAr physics | 1%                              | Passive materials        | ND CDR Sec. 2.7  |
| Muon charge tagging                | ND-LAr physics | 100% FHC                        | RHC uses Michel tag      | LBL CAF          |
| Numu CC efficiency                 | ND-LAr physics |                                 |                          |                  |
| Hadronic energy resolution         | ND-LAr physics | 0%                              | Calorimetric             | LBL CAF          |
| Vertex activity threshold          | ND-LAr physics | 20 MeV                          |                          | ND CDR ND-C1.2.  |
| NC mis-ID rate                     | ND-LAr physics | Energy-dependent                | See CAF                  | LBL CAF          |
| Michel tag efficiency              | ND-LAr physics | 75%                             |                          | LBL CAF          |
| Electron shower energy resolution  | ND-LAr physics | 5%; 3%+1%/sqrt(E) per CAFs      | GeV                      | ND CDR ND-C1.2.  |
| Electron shower angular resolution | ND-LAr physics | core<5mr, tail<12mr for Ee>2GeV | Analytic smearing in CAF | ND CDR ND-C1.2.  |
| Electron ID vs. mu, gamma, Pi0     | ND-LAr physics |                                 |                          | ND CDR ND-C1.2.  |
| Pi0 mid-ID rate                    | ND-LAr physics | 15% for d<2 cm                  | SS is <50MeV, <10 mrad   | LBL CAF          |
| Nue CC efficiency                  | ND-LAr physics | 100% at >700 MeV                | Linear down to 300 MeV   | ND CDR ND-C1.3   |
| Nue CC purity                      | ND-LAr physics |                                 |                          | ND CDR ND-C1.3   |
| Nu+e ES efficiency                 | ND-LAr physics | 2% stat uncert                  | >2500 ev/y               | ND CDR ND-C1.2   |
| Pileup mis-ID rate                 | ND-LAr physics | 10%                             |                          | LBL CAF          |
| Pileup mis-ID energy bias          | ND-LAr physics | 0.5                             | GeV                      | LBL CAF          |
| Interaction purity                 | ND-LAr physics | >97% averaged over interactions |                          | ND-LAr SYS-003   |
| Interaction completeness           | ND-LAr physics | >97% averaged over interactions |                          | ND-LAr SYS-004   |
| Charge-light matching efficiency   | ND-LAr physics | >97% averaged over interactions |                          | ND-LAr SYS-005   |
| Muon acceptance                    | ND-LAr physics | >0.1%, >10% typical             |                          | ND CDR Sec 2.5.3 |
| Neutron multiplicity distribution  | ND-LAr physics |                                 | Neutrino-induced         | ND CDR Fig. 2.13 |
| Neutron momentum distribution      | ND-LAr physics |                                 | Neutrino-induced         | ND CDR Fig. 2.13 |
| Pi0 multiplicity distribution      | ND-LAr physics |                                 | Neutrino-induced         | ND CDR Fig. 2.20 |
| Pi0 momentum distribution          | ND-LAr physics |                                 | Neutrino-induced         | ND CDR Fig. 2.20 |
| Hadronic containment for FV        | ND-LAr physics | 95%                             |                          | ND CDR Sec 2.5.1 |
|                                    |                |                                 |                          |                  |

(Organized a 4-day reconstruction <u>tutorial</u> in October 2021 that allowed us to expand our effort and to kickstart this work)

- More aggressive goal: production of full end-to-end simulation and reconstruction samples
  - Pursued in parallel with baseline goal: use the same tools
  - Want tools in place for Preliminary Design Review in summer 2022
  - LBL and other analyses will require several iterations
    - Aiming to complete first trial run for LBL group by ~March 2022 (see next slide)







## **ND-LAr Physics Analysis**

Long-Baseline Physics Targets

- 1. Reproduce TDR analysis with full reconstruction
  - $v_{\mu}CC$  in  $E_{\mu}$ ,  $E_{had}$ , parametric detector systematics
- 2. Improved systematics modeling
  - Model informed by low-level simulation variations
  - Dedicated point person (A. Mogan, CSU)
    brings MicroBooNE systematics experience
- 3. Long-term strategies
  - New approaches, e.g. differentiable simulation (K. Terao, SLAC)

Working closely with LBL and Interactions groups, and "DIRT-II" systematics task force, via group liaisons









## Major Targets - Hardware Driven

#### Module-1 data analysis (~February 2022):

- Main goal: ensure overall "health" of module with cosmics
- Repeat most analyses done on Module-0 & understand any new features seen
- Plan to organize tutorial on data analysis basics to widen pool of analyzers and to organize the work (~February 2022)
- Repeat process for modules 2-3

#### 2x2 data analysis (~Fall 2022):

- Main goals: demonstrate performance of ND-LAr design in beam environment, inform ND-LAr design, but also produce some physics in the process!
- Need to have full end-to-end simulation and reconstruction before this detector comes online - matches timeline two slides ago
- Plan to organize workshop on possible physics analyses in preparation for data-taking (~Summer 2022?)



## Plans for Collaboration Meeting

- The ND-LAr Analysis parallel session is scheduled for Thursday
  January 27 at 10am CT
- Plan to have reports on the following fronts:
  - Big picture strategy
  - Charge and light simulations
  - MLReco and Pandora reconstructions
  - Updates on Module-0 analysis and/or data/MC comparisons
- Will also have a separate ND + LBL session: ←to be announced soon
  - Our group will likely contribute two talks:
    - Status & plans
    - First thoughts on ND-LAr systematics







## Summary

- Significant progress on simulation and reconstruction building on shared DUNE ND efforts and tools
- Components in place for a complete end-to-end system
  - Detector geometry and response simulation for charge & light readout
  - Reconstruction (for Geant4 level) in analysis trees
- Reconstruction of detector simulations in progress, and ramping up revisiting CAF-based analysis of the ND CDR and FD TDR
- Module-0 analysis is providing valuable design feedback
- Excellent team, person-power remains a challenge
  - Expanded effort in support of Module-0 indicates a ramp-up in ND-LAr analysis involvement, CAFs enable higher-level analysis
  - Actively working to recruit more people, especially for high-level analysis
- Subsystem leads: if you require analysis input for PDR, please let us know as soon as you can

