Constraining $\nu(\bar{\nu})$ Interactions in LAr

R. Petti

University of South Carolina, Columbia SC, USA

SAND Physics/Software meeting 21 January 2022

UNDERSTANDING CC INTERACTIONS IN LAr

- I Nuclear smearing from target Ar nucleus: Ar target + "solid" H target in STT
- II Hadron multiplicities from $\nu(\bar{\nu})$ -Ar: Ar target + low density STT in B field
- **III** Secondary interactions in LAr (transport): LAr + low density STT in B field
 - ⇒ GRAIN+STT can disentangle and constrain different effects offering a calibration tool for both ND-LAr and FD

SECONDARY INTERACTIONS IN LAr (III)

- Acceptance variation vs. vertex z in LAr controlled by interacting/stopping hadrons \implies Hadrons exiting from sides of GRAIN small fraction (~ 6% of π^{\pm}) of total
- Excellent vertex resolution for CC events with ≥ 1 reconstructed hadrons in STT.
- Determine mean free path τ from analysis of reconstructed π^{\pm} , p vs. z in LAr:

 $N_{\pi}^{\mathrm{rec}}(\Delta z) = N_0 \exp\left(-\Delta z/\tau\right)$

with Δz thickness of LAr crossed along z axis.

Constraining secondary interactions in GRAIN+STT:

- Exploit thickness of GRAIN and unique combination of LAr followed by low-density STT;
- Small number of reconstructed secondary π^{\pm}, p in STT roughly proportional to interaction rate
- Separation of secondary interactions from primary particles emerging from $\nu(\bar{\nu})$ -Ar interactions.

HADRON MULTIPLICITIES FROM $u(ar{ u})$ -Ar (II)

• Excellent π/p identification in STT+ECAL allows high purity selection of π^{\pm}, p multiplicities (neglect tiny K^{\pm} fraction).

• Measured mean free path τ in LAr can be used to correct reconstructed multiplicities:

 $N_{2\pi}^{0} = N_{2\pi} \exp(2\Delta z/\tau)$ $N_{1\pi}^{0} = N_{1\pi} \exp(\Delta z/\tau) - N_{2\pi}^{0} \exp(\Delta z/\tau) \left[1 - \exp(-2\Delta z/\tau)\right]$ $N_{0\pi}^{0} = N_{0\pi} - \left[1 - \exp(-\Delta z/\tau)\right] \left[N_{1\pi}^{0} + N_{2\pi}^{0} - N_{2\pi}^{0} \exp(-\Delta z/\tau)\right]$

with only $\leq 2\pi$ for illustration and similar relations can be written for p topologies.

+ Data-driven diagonalization of migration matrix among different π^{\pm}, p topologies:

- Final state multiplicities emerging from $\nu(\bar{\nu})$ -Ar interactions can be determined using the downstream LAr fiducial volume close to STT with $\Delta z \ll \tau$;
- Small number of reconstructed secondary π^{\pm}, p can be reduced using backward track extrapolation;
- Excellent momentum and angular resolution in STT limits smearing effects on kinematics.

CONSTRAINING NUCLEAR SMEARING IN Ar (I)

- Compare interactions on H in STT and on Ar in GRAIN for $\Delta z \ll \tau$:
 - Constraining the nuclear smearing if acceptance R_{det} similar for Ar and H;
 - Calibration of the (anti)neutrino energy scale.

Providing necessary redundancy against MC/model & unexpected discrepancies:

- Ar detectors alone (even ideal) cannot resolve nuclear smearing & related systematics;
- PRISM alone sensitive to (beam) model & tuning to resolve off-axis discrepancies.
- ⇒ Synergy between PRISM and Hydrogen measurements in STT to resolve systematics from beam modeling & nuclear smearing