Light simulation and reconstruction with lenses in GRAIN

SAND meeting - 21/01/2022

Matteo Vicenzi, B. Bottino, A. Caminata, A. Campani, S. Copello, L. Di Noto, M. Pallavicini

Lenses in GRAIN

- Gas-lens concept (first prototype):
- Xe-doped LAr (175nm)
- Two plane-convex lenses
- Focusing with inner gas layer ($n_{\text {gas }}<$
$n_{L A r+X e}$)
- Lens-sensor distance fixed to optimize the depth of field

- In the current design, two opposite cameras can cover up to 100 cm :

Geometry in GRAIN

- Latest GRAIN geometry (option 2), equipped with lens-cameras inside the LAr volume.
- Except $L_{x}=1000 \mathrm{~mm}$
- 38 cameras, for maximum coverage:
- 14 pairs on the sides (at optimal distance)
- 5 pairs on top/bottom
- Assuming 32×32 matrix sensors, with 2 mm pixels and 20\% QE.

Full GEANT4 implementation:

Optical simulation

- The optical simulation is integrated in the SAND framework:

Event in GRAIN

- Example of $v_{\mu} C C$ interaction inside GRAIN

Hough transform

- Reconstruction algorithm to find and fit lines based on Hough Transform.
- Reduces the problem to a local max search in the parameter space (θ, ρ).

Physical space

Parameter space

Reconstructed lines

Visible tracks in an event

- How is the reconstruction algorithm performing?
- Compare with the «truth projections»
- A true charged track (from EDepSim) is assumed visible in a camera if its truth projection is > $\mathbf{1 0}$ pixels.
- At event level, take the number of visible tracks as the max number of visible tracks found in any camera.

[^0]Y-axis: number of PRIMARY charged tracks at vertex from EDepSim.

Cameras with visible tracks

- Number of cameras with visible tracks (truth projections, > 10 pixels) as a function of the vertex position in GRAIN.
- Coordinates in the local reference system of GRAIN.

Sample: $15 \mathrm{k} v_{\mu} C C$ events

Cameras with visible vertex

- Number of cameras with a visible vertex (> 2 visible tracks, vertex projection) as a function of the vertex position in GRAIN.
- Coordinates in the local reference system of GRAIN.

Sample: $15 \mathrm{k} v_{\mu} C C$ events

X-vertex vs CAMs w/ vertex

Y-vertex vs CAMs w/ vertex

Z-vertex vs CAMs w/ vertex

Similar distributions, but overall less cameras
No more than $10 \rightarrow$ expected given the geometrical coverage

- Good fiducial volume in the current configuration: up to 5-10 cameras can potentially see the vertex!

Checking the reconstruction...

- Reconstructed vs visible tracks:
- Comparing reconstructed tracks via Hough trasform with visible tracks in each camera.
- Sample: $1 \mathrm{k} v_{\mu} C C 1 p 1 p i$, each event can have up to 38 cameras

Reconstructed tracks in event

- At event level, take the number of reconstructed tracks as the max number of visible tracks found in any camera.
- Comparison with the same quantity using visible lines.
- Visible tracks peaked at 3 in this sample
- Reco tracks generally > visible tracks (fake lines due to bad clustering, bias from selecting «max»)

Sample: $1 \mathrm{k} v_{\mu} C C 1 p 1 p i$
Visible tracks (max) vs Reco tracks (max)

ZY (side)

3D vertex performance: STT only

- Events in GRAIN, with > 2 tracks in STT:
- Circular fit in ZY (first 50 ZY STT digits upstream): $z_{\text {reco }}$ and $y_{\text {reco }}$
- Linear fit in XY (first 50 XY STT digits upstream): $x_{\text {reco }}$

XZ (top)

3D vertex: GRAIN only (visible tracks)

2D vertex

- Event in GRAIN, fitted using visible tracks
- Simple line fit (one visible track at a time), intersect to find 2D estimate
- Propagate to 3D (pinhole approx.), intersect and find the average

3D line
(under pinhole
Approximation)
3D vertex estimate

3D vertex: GRAIN only (reco tracks)

) 2D vertex

- Event in GRAIN, fitted using reconstructed tracks
- Hough transform, intersect to find 2D estimate
- Propagate to 3D (pinhole approx.), intersect and find the average

Sample:
$1 k v_{\mu} C C 1 p 1 p i$

Not surprising:
still a lot of
things to fix!

3D vertex: GRAIN only (hand-fitted reco tracks)

- Manual check of each fitted track: selection of «good» images and finding (m, q) for each line
- 15 events in GRAIN, 2D hand-fitting (same 2D \rightarrow 3D as before)
- Comparison with STT-only fit

Sample:

$$
\text { GRAIN: } 15 v_{\mu} C C 1 p 1 p i
$$

$$
\text { STT: ~ } 27 k v_{\mu} C C \quad 1 p 1 p i
$$

Next steps: STT matching

- Checking and matching tracks in STT:
- Tracks stopping inside GRAIN
- Tracks exiting GRAIN and matching STT digits.

XZ (top)

- Tracks stopping in GRAIN cryostat
- Working in progress...

Next steps: 3D tracks

- Matching requires 3D information...
- First examples of combining 2D data into 3D:
- Finding the 3D volume compatible with all the views...

XZ (top)

Y

Summary

- Cameras with UV lenses as imaging devices in GRAIN
- Geometrical configuration in new GRAIN geometry but with smaller x-dimension: good geometrical coverage of events (5-10 cameras with a «visible» vertex)
- Reconstruction with Hough transform.
- Preliminary agreement between visible and reconstructed tracks
- Preliminary determination of 3D vertex position in GRAIN
- Next steps:
- 3D tracks and matching with STT

DEEP UNDERGROUND
NEUTRINO EXPERIMENT

Back-up

Matteo Vicenzi - Meeting annuale collaborazione nazionale DUNE - Bologna, 11-12 Novembre 2021

析
 Università di Genova

Istituto Nazionale di Fisica Nucleare
Sezione di Genova

[^0]: X -axis: number of visible tracks the event (primary or secondary), taken as the max number of visible tracks seen among all cameras.

