

Light simulation and reconstruction with lenses in GRAIN

SAND meeting - 21/01/2022

Matteo Vicenzi, B. Bottino, A. Caminata, A. Campani, S. Copello, L. Di Noto, M. Pallavicini

Lenses in GRAIN

- Gas-lens concept (first prototype):
 - Xe-doped LAr (175nm)
 - Two plane-convex lenses
 - Focusing with inner gas layer ($n_{gas} < n_{LAr+Xe}$)
 - Lens-sensor distance fixed to optimize the depth of field
- In the current design, two opposite cameras can cover up to 100 cm:

Geometry in GRAIN

- Latest GRAIN geometry (option 2), equipped with lens-cameras inside the LAr volume.
 - Except $L_x = 1000 mm$
- 38 cameras, for maximum coverage:
 - 14 pairs on the sides (at optimal distance)
 - 5 pairs on top/bottom
- Assuming 32x32 matrix sensors, with 2 mm pixels and 20% QE.

Full GEANT4 implementation:

Optical simulation

• The optical simulation is integrated in the SAND framework:

Event in GRAIN

• Example of $v_{\mu}CC$ interaction inside GRAIN

DUNE

ZY (side)

-1500

-2000

 ν_{μ}

XZ (top)

2500 2000 1500

Hough transform

- Reconstruction algorithm to find and fit lines based on Hough Transform.
- Reduces the problem to a local max search in the parameter space (θ, ρ) .

True EDepSIm deposits scaled in the sensor area

in the middle

Horizontal lines in the middle

- Local max search:
 - Multi-otsu
 thresholding
 - DSCAN clustering

Uni**Ge**

Reconstructed lines

UniGe

Visible tracks in an event

- How is the reconstruction algorithm performing?
 - Compare with the «truth projections»
- A true charged track (from EDepSim) is assumed visible in a camera if its truth projection is > 10 pixels.
- At event level, take the number of visible tracks as the max number of visible tracks found in any camera.

UniGe

<u>X-axis:</u> number of visible tracks the event (primary or secondary), taken as the **max** number of visible tracks seen among all cameras.

<u>Y-axis:</u> number of PRIMARY charged tracks at vertex from EDepSim.

Matteo Vicenzi – SAND meeting – 21/01/2022

Cameras with visible tracks

- Number of cameras with visible tracks (truth projections, > 10 pixels) as a function of the vertex position in GRAIN. .
- Coordinates in the local reference system of GRAIN. .

<u>Sample</u>: 15k $\nu_{\mu}CC$ events

Tracks not visible if too downstream in GRAIN (z > 150mm)

30

N of CAMs w/ visible tracks

35

Always cameras with visible tracks if z < -100mm

to GRAIN endcaps

(x = +500 mm)

middle (x and y) of GRAIN

100

- 90

- 80

-70

60

- 50

40

-30

20

10

Cameras with visible vertex

• Number of cameras with a visible vertex (> 2 visible tracks, vertex projection) as a function of the vertex position in GRAIN.

• Coordinates in the local reference system of GRAIN.

Similar distributions, but overall less cameras No more than 10 \rightarrow expected given the geometrical coverage

• Good fiducial volume in the current configuration: up to 5-10 cameras can potentially see the vertex!

Checking the reconstruction...

• Reconstructed vs visible tracks:

UniGe

- Comparing reconstructed tracks via Hough trasform with visible tracks **in each camera**.
- Sample: 1k $\nu_{\mu}CC$ 1p1pi, each event can have up to 38 cameras

Reconstructed tracks in event

- At event level, take the number of reconstructed tracks as the max number of visible tracks found in any camera.
- Comparison with the same quantity using visible lines.
 - Visible tracks peaked at 3 in this sample
 - Reco tracks generally > visible tracks (fake lines due to bad clustering, bias from selecting «max»)

<u>Sample</u>: 1k $v_{\mu}CC$ 1p1pi

Visible tracks (max) vs Reco tracks (max)

Uni**Ge**

2D vertex

estimate

on CAM2

3D vertex: GRAIN only (hand-fitted reco tracks)

- Manual check of each fitted track: selection of (m, q) for each line
 - 15 events in GRAIN, 2D hand-fitting (same $2D \rightarrow 3D$ as before)
 - Comparison with STT-only fit

Sample:

GRAIN: 15 $\nu_{\mu}CC$ 1p1pi

STT: ~ $27k v_{\mu}CC 1p1pi$

Next steps: STT matching

- Checking and matching tracks in STT: •
 - Tracks stopping inside GRAIN
 - Tracks exiting GRAIN and matching STT digits. •

CAM2

CAM2

- Tracks stopping in GRAIN cryostat
- Working in progress...

CAM1

GRAIN

INFN

UniGe

Field-of-View

Particle track

CAM1

Next steps: 3D tracks

- Matching requires 3D information...
- First examples of combining 2D data into 3D:
 - Finding the 3D volume compatible with all the views...

Summary

- Cameras with UV lenses as imaging devices in GRAIN
 - Geometrical configuration in new GRAIN geometry but with smaller x-dimension: good geometrical coverage of events (5-10 cameras with a «visible» vertex)
 - Reconstruction with Hough transform.
- Preliminary agreement between visible and reconstructed tracks
- Preliminary determination of 3D vertex position in GRAIN
- Next steps:
 - 3D tracks and matching with STT

DEEP UNDERGROUND NEUTRINO EXPERIMENT

Back-up

Matteo Vicenzi – Meeting annuale collaborazione nazionale DUNE – Bologna, 11-12 Novembre 2021

Istituto Nazionale di Fisica Nucleare Sezione di Genova

